The BBM or regularized long-wave equation [GRAPHICS] was originally proposed as an alternative to the Korteweg-de Vries equation in describing small-amplitude, long surface wave propagation. Its well-posedness in H-1(R) and L-2(R) have been studied by many authors. In this paper, I consider the BBM-equation while the initial data phi is a periodic function on line R. The result is that if phi is Lebesgue measurable and square-integrable within one period interval, then equation (0.1) is globally well posed in time t. (C) 2004 Elsevier Ltd. All rights reserved.
机构:
Univ Illinois, Dept Math Stat & Comp Sci, 851 S Morgan St, Chicago, IL 60607 USAUniv Illinois, Dept Math Stat & Comp Sci, 851 S Morgan St, Chicago, IL 60607 USA
Bona, J. L.
Chatziafratis, A.
论文数: 0引用数: 0
h-index: 0
机构:
Natl & Kapodistrian Univ Athens, Dept Math, Zografos, Greece
FORTH, Inst Appl & Computat Math, Iraklion 70013, GreeceUniv Illinois, Dept Math Stat & Comp Sci, 851 S Morgan St, Chicago, IL 60607 USA
Chatziafratis, A.
Chen, H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Memphis, Dept Math Sci, Dunn Hall, Memphis, TN 38152 USAUniv Illinois, Dept Math Stat & Comp Sci, 851 S Morgan St, Chicago, IL 60607 USA
Chen, H.
Kamvissis, S.
论文数: 0引用数: 0
h-index: 0
机构:
FORTH, Inst Appl & Computat Math, Iraklion 70013, Greece
Univ Crete, Dept Pure & Appl Math, Iraklion 70013, GreeceUniv Illinois, Dept Math Stat & Comp Sci, 851 S Morgan St, Chicago, IL 60607 USA