Periodic initial-value problem for BBM-Equation

被引:8
|
作者
Chen, HQ [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
关键词
BBM-equation; KdV-equation dispersion relation; Fourier-multiplier;
D O I
10.1016/j.camwa.2004.10.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The BBM or regularized long-wave equation [GRAPHICS] was originally proposed as an alternative to the Korteweg-de Vries equation in describing small-amplitude, long surface wave propagation. Its well-posedness in H-1(R) and L-2(R) have been studied by many authors. In this paper, I consider the BBM-equation while the initial data phi is a periodic function on line R. The result is that if phi is Lebesgue measurable and square-integrable within one period interval, then equation (0.1) is globally well posed in time t. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1305 / 1318
页数:14
相关论文
共 50 条
  • [1] DISSIPATIVE INITIAL BOUNDARY VALUE PROBLEM FOR THE BBM-EQUATION
    Larkin, Nikolai A.
    Vishnevskii, Mikhail P.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2008,
  • [2] APPROXIMATING INITIAL-VALUE PROBLEMS WITH TWO-POINT BOUNDARY-VALUE PROBLEMS: BBM-EQUATION
    Bona, J. L.
    Chen, H.
    Sun, S. -M.
    Zhang, B. -Y.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2010, 36 (01) : 1 - 25
  • [3] Initial-value problem of the discrete periodic Toda equation and its ultradiscretization
    Kimijima, T
    Tokihiro, T
    INVERSE PROBLEMS, 2002, 18 (06) : 1705 - 1732
  • [4] On the Initial-Value Problem for the Kawahara Equation
    Faminskii A.V.
    Opritova M.A.
    Journal of Mathematical Sciences, 2014, 201 (5) : 614 - 633
  • [5] ON AN INITIAL-VALUE PROBLEM OF A DEGENERATE EQUATION
    ZHENG, XL
    KEXUE TONGBAO, 1982, 27 (08): : 906 - 907
  • [6] ON INITIAL-VALUE PROBLEM OF A CLASS OF DEGENERATE EQUATION
    ZHENG, XG
    KEXUE TONGBAO, 1983, 28 (11): : 1433 - 1436
  • [7] INITIAL-VALUE PROBLEM IN THE LARGE FOR VONKARMAN EQUATION
    BEZHANISHVILI, DA
    DIFFERENTIAL EQUATIONS, 1983, 19 (01) : 14 - 17
  • [8] A semi-periodic initial-value problem for the Kadomtsev-Petviashvili II equation
    Kalamvokas, P.
    Papageorgiou, V. G.
    Fokas, A. S.
    Sung, L-Y
    NONLINEARITY, 2023, 36 (10) : 5422 - 5473
  • [9] ON INITIAL-VALUE PROBLEM OF TRANSPORT EQUATION FOR A MODERATOR SLAB
    UKAI, S
    JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY-TOKYO, 1966, 3 (10): : 22 - &
  • [10] THE INITIAL-VALUE PROBLEM FOR THE ERMAKOV-PINNEY EQUATION
    REID, JL
    RAY, JR
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1984, 64 (08): : 365 - 366