Teleportation of general finite-dimensional quantum systems

被引:63
|
作者
Albeverio, S [1 ]
Fei, SM
机构
[1] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
[2] Ruhr Univ Bochum, Fak Math, D-44780 Bochum, Germany
关键词
D O I
10.1016/S0375-9601(00)00659-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Teleportation of finite-dimensional quantum states by a nonlocal entangled state is studied. For a generally given entangled state, an explicit equation that governs the teleportation is presented. Detailed examples and the roles played by the dimensions of the Hilbert spaces related to the sender, receiver and the auxiliary space are discussed. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:8 / 11
页数:4
相关论文
共 50 条
  • [21] Finite-dimensional representations of a quantum double
    Chen, HX
    JOURNAL OF ALGEBRA, 2002, 251 (02) : 751 - 789
  • [22] Characterizing finite-dimensional quantum behavior
    Navascues, Miguel
    Feix, Adrien
    Araujo, Mateus
    Vertesi, Tamas
    PHYSICAL REVIEW A, 2015, 92 (04):
  • [23] FINITE-DIMENSIONAL QUANTUM-MECHANICS
    GUDDER, S
    NARODITSKY, V
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1981, 20 (08) : 619 - 643
  • [24] Exact and lower bounds for the quantum speed limit in finite-dimensional systems
    Johnsson M.T.
    Van Luijk L.
    Burgarth D.
    Physical Review A, 2023, 108 (05)
  • [25] A complementarity-based approach to phase in finite-dimensional quantum systems
    Klimov, AB
    Sánchez-Soto, LL
    de Guise, H
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2005, 7 (09) : 283 - 287
  • [26] On Measures of Classicality/Quantumness in Quasiprobability Representations of Finite-Dimensional Quantum Systems
    N. Abbasli
    V. Abgaryan
    M. Bures
    A. Khvedelidze
    I. Rogojin
    A. Torosyan
    Physics of Particles and Nuclei, 2020, 51 : 443 - 447
  • [27] Equivalence between exact and approximate controllability for finite-dimensional quantum systems
    Boscain, Ugo
    Gauthier, Jean-Paul
    Rossi, Francesco
    Sigalotti, Mario
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 7761 - 7764
  • [28] On Measures of Classicality/Quantumness in Quasiprobability Representations of Finite-Dimensional Quantum Systems
    Abbasli, N.
    Abgaryan, V.
    Bures, M.
    Khvedelidze, A.
    Rogojin, I.
    Torosyan, A.
    PHYSICS OF PARTICLES AND NUCLEI, 2020, 51 (04) : 443 - 447
  • [29] Extended Cahill-Glauber formalism for finite-dimensional spaces. II. Applications in quantum tomography and quantum teleportation
    Marchiolli, MA
    Ruzzi, M
    Galetti, D
    PHYSICAL REVIEW A, 2005, 72 (04):
  • [30] A GENERAL APPROACH TO FINITE-DIMENSIONAL DIVISION ALGEBRAS
    Dieterich, Ernst
    COLLOQUIUM MATHEMATICUM, 2012, 126 (01) : 73 - 86