Anomaly detection based on the statistics of hyperspectral imagery

被引:10
|
作者
Catterall, S [1 ]
机构
[1] QinetiQ, Farnborough GU14 0LX, Hants, England
来源
IMAGING SPECTROMETRY X | 2004年 / 5546卷
关键词
anomaly detection; hyperspectral; Multivariate Normal Inverse Gaussian distribution;
D O I
10.1117/12.557161
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The purpose of this paper is to introduce a new anomaly detection algorithm for application to hyperspectral imaging (HSI) data. The algorithm uses characterisations of the joint (among wavebands) probability density function (pdf) of HSI data. Traditionally, the pdf has been assumed to be multivariate Gaussian or a mixture of multivariate Gaussians. Other distributions have been considered by previous authors, in particular Elliptically Contoured Distributions (ECDs). In this paper we focus on another distribution, which has only recently been defined and studied. This distribution has a more flexible and extensive set of parameters than the multivariate Gaussian does, yet the pdf takes on a relatively simple mathematical form. The result of all this is a model for the pdf of a hyperspectral image, consisting of a mixture of these distributions. Once a model for the pdf of a hyperspectral image has been obtained, it can be incorporated into an anomaly detector. The new anomaly detector is implemented and applied to some medium wave infra-red (MWIR) hyperspectral imagery. Comparison is made with a well-known anomaly detector, and it will be seen that the results are promising.
引用
收藏
页码:171 / 178
页数:8
相关论文
共 50 条
  • [21] Anomaly target detection for hyperspectral imagery based on orthogonal feature
    Gan, Yuquan
    Li, Lei
    Liu, Ying
    Yi, Chen
    Zhang, Ji
    JOURNAL OF APPLIED REMOTE SENSING, 2021, 15 (04)
  • [22] Projection-based adaptive anomaly detection for hyperspectral imagery
    Kwon, H
    Der, SZ
    Nasrabadi, NM
    2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 1, PROCEEDINGS, 2003, : 1001 - 1004
  • [23] Anomaly Targets Detection of Hyperspectral Imagery Based on Sparse Representation
    Cheng Baozhi
    2016 FIRST IEEE INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND THE INTERNET (ICCCI 2016), 2016, : 388 - 391
  • [24] Weighted Sparseness-Based Anomaly Detection for Hyperspectral Imagery
    Lian, Xing
    Zhao, Erwei
    Zheng, Wei
    Peng, Xiaodong
    Li, Ang
    Zhen, Zheng
    Wen, Yan
    SENSORS, 2023, 23 (04)
  • [25] Anomaly Detection for Hyperspectral Imagery Based on Improved Manifold Algorithm
    Wang, Liangliang
    Li, Zhiyong
    Sun, Jixiang
    Du, Chun
    INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2011, 14 (12): : 4067 - 4073
  • [26] Efficient anomaly detection and discrimination for hyperspectral imagery
    Ren, H
    Du, Q
    Jensen, J
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY VIII, 2002, 4725 : 234 - 241
  • [27] ANOMALY DETECTION WITH TRAINING DATA IN HYPERSPECTRAL IMAGERY
    Liu, Jun
    Feng, Yutong
    Liu, Weijian
    Orlando, Danilo
    Li, Hongbin
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 4836 - 4840
  • [28] Mixture models for anomaly detection in hyperspectral imagery
    Willis, CJ
    MILITARY REMOTE SENSING, 2004, 5613 : 119 - 128
  • [29] Hyperspectral imagery: Clutter adaptation in anomaly detection
    Schweizer, SM
    Moura, JMF
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (05) : 1855 - 1871
  • [30] Adaptive causal anomaly detection for hyperspectral imagery
    Hsueh, M
    Chang, CI
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 3222 - 3224