In vivo evaluation of a porous hydroxyapatite/poly-D-lactide composite for bone tissue engineering

被引:54
|
作者
Hasegawa, Shin [1 ]
Neo, Masashi
Tamura, Jiro
Fujibayashi, Shunsuke
Takemoto, Mitsuru
Shikinami, Yasuo
Okazaki, Kenshi
Nakamura, Takashi
机构
[1] Kyoto Univ, Grad Sch Med, Dept Orthopaed Surg, Sakyo Ku, Kyoto 6068507, Japan
[2] Takiron Co Ltd, Chuo Ku, Osaka 5410052, Japan
关键词
porous; hydroxyapatite; poly-DL-lactide composite; osteoconduction; osteoinduction; scaffold;
D O I
10.1002/jbm.a.31109
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
As reported previously, a porous composite of uncalcined hydroxyapatite (u-HA) and poly-DL-lactide (PDLLA) showed excellent osteoconductivity and biodegradability as a bone substitute in rabbit model. In this study, to investigate the usefulness of this composite as a scaffold loaded with cells, we estimated whether this material showed osteogenesis on implantation to extraosseous site. On loading With syngeneic bone marrow cells and implantation into rat dorsal subcutaneous tissue, osteogenesis with enchondral ossification was seen both on and in the material at 3 weeks after implantation. The osteogenesis in the u-HA/PDLLA had progressed, and newly formed bone tissue was found in the material by 6 weeks. To investigate the osteoinductive properties of the material, we implanted this porous composite material into extraosseous canine dorsal muscle. At 8 weeks, osteogenesis was seen in the pores of the material. Newly formed bone could be observed adjacent to the material. In addition, cuboidal osteoblasts adjacent to the newly formed bone were evident. Neither cartilage nor chondrocytes were found. These results might indicate that the material induced osteogenesis by intramembranous ossification. Conversely, similar porous PDLLA did not induce osteogenesis during the observation period. Therefore, porous HA/PDLLA, which has osteoconductive and osteoinductive properties, might be a useful material for use as a bone substitute and cellular scaffold. (c) 2007 Wiley Periodicals, Inc. J Biomed Mater Res 81A: 930-938, 2007.
引用
收藏
页码:930 / 938
页数:9
相关论文
共 50 条
  • [41] In vivo degradation behavior of porous composite scaffolds of poly(lactide-co-glycolide) and nano-hydroxyapatite surface grafted with poly(L-lactide)
    Yu-feng Tang
    Jian-guo Liu
    Zong-liang Wang
    Yu Wang
    Li-guo Cui
    Pei-biao Zhang
    Xue-si Chen
    Chinese Journal of Polymer Science, 2014, 32 : 805 - 816
  • [42] In Vivo Degradation Behavior of Porous Composite Scaffolds of Poly(lactide-co-glycolide) and Nano-hydroxyapatite Surface Grafted with Poly(L-lactide)
    Yu-feng Tang
    刘建国
    Zong-liang Wang
    Yu Wang
    Li-guo Cui
    章培标
    Xue-si Chen
    Chinese Journal of Polymer Science, 2014, 32 (06) : 805 - 816
  • [43] Fabrication and evaluation of 3D printed poly(L-lactide) copolymer scaffolds for bone tissue engineering
    Fan, Tiantang
    Qin, Jingwen
    Li, Jiafeng
    Liu, Jifa
    Wang, Ying
    Liu, Qing
    Fan, Tianyun
    Liu, Fengzhen
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 245
  • [44] A Porous Hydroxyapatite/Gelatin Nanocomposite Scaffold for Bone Tissue Repair: In Vitro and In Vivo Evaluation
    Azami, Mahmoud
    Tavakol, Shima
    Samadikuchaksaraei, Ali
    Hashjin, Mehran Solati
    Baheiraei, Nafiseh
    Kamali, Mehdi
    Nourani, Mohammad Reza
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2012, 23 (18) : 2353 - 2368
  • [45] Conductive Polyaniline Particles Regulating In Vitro Hydrolytic Degradation and Erosion of Hydroxyapatite/Poly(lactide-co-glycolide) Porous Scaffolds for Bone Tissue Engineering
    Yan, Huanhuan
    Wang, Chen
    Zhang, Qingxia
    Yu, Pengfei
    Xiao, Yuwei
    Wang, Chunhua
    Zhang, Peibiao
    Hou, Guige
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2023, 9 (03) : 1541 - 1557
  • [46] Preparation and investigation of porous hydroxyapatite-gelatin composite scaffolds designed for bone tissue engineering
    Narbar, M. Kazemzadeh
    Ilashtjin, M. Solati
    Pazouki, M.
    CYTOTHERAPY, 2006, 8 : 63 - 63
  • [47] Degradation and biocompatibility of porous nano-hydroxyapatite/polyurethane composite scaffold for bone tissue engineering
    Dong, Zhihong
    Li, Yubao
    Zou, Qin
    APPLIED SURFACE SCIENCE, 2009, 255 (12) : 6087 - 6091
  • [48] Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering: Preparation, characterization, and in vitro studies
    Lin, HR
    Yeh, YJ
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2004, 71B (01): : 52 - 65
  • [49] Fabrication of poly(L-lactide) porous beads coated with hydroxyapatite using a simple fluidic device for tissue engineering
    Joo Hwan Kim
    Tae-Kyung Ryu
    Seung-Kwan Moon
    Ji-Seon Lee
    Kyeongsoon Park
    Sung Eun Kim
    Sung-Wook Choi
    Macromolecular Research, 2015, 23 : 501 - 504
  • [50] Fabrication of poly(L-lactide) porous beads coated with hydroxyapatite using a simple fluidic device for tissue engineering
    Kim, Joo Hwan
    Ryu, Tae-Kyung
    Moon, Seung-Kwan
    Lee, Ji-Seon
    Park, Kyeongsoon
    Kim, Sung Eun
    Choi, Sung-Wook
    MACROMOLECULAR RESEARCH, 2015, 23 (06) : 501 - 504