Banach spaces with the Daugavet property

被引:10
|
作者
Kadets, VM
Shvidkoy, RV
Sirotkin, GG
Werner, D
机构
[1] Kharkov State Univ, Fac Mecan & Math, UA-310077 Kharkov, Ukraine
[2] Free Univ Berlin, Inst Math 1, D-14195 Berlin, Germany
关键词
D O I
10.1016/S0764-4442(97)82356-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Banach space X is said to have the Daugavet property if every operator T : X --> X of rank 1 satisfies //Id + T// = 1 + //T//. We show that then every weakly compact operator satisfies this equation as well and that X contains a copy of l(1). However, X need not contain a copy of L-1. We also show that a Banach space with the Daugavet property does not embed into a space with an unconditional basis. In another direction, we investigate spaces where the set of operators with //Id + T// = 1 + //T// is as small as possible and give characterizations in terms of a smoothness condition.
引用
收藏
页码:1291 / 1294
页数:4
相关论文
共 50 条
  • [31] The Daugavet equation in Banach spaces with alternatively convex-smooth duals
    Wojcik, Pawel
    KYOTO JOURNAL OF MATHEMATICS, 2018, 58 (04) : 915 - 921
  • [32] THE GEOMETRY OF Lp-SPACES OVER ATOMLESS MEASURE SPACES AND THE DAUGAVET PROPERTY
    Sanchez Perez, Enrique A.
    Werner, Dirk
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2011, 5 (01): : 167 - 180
  • [33] A pseudo-Daugavet property for narrow projections in Lorentz spaces
    Popov, MM
    Randrianantoanina, B
    ILLINOIS JOURNAL OF MATHEMATICS, 2002, 46 (04) : 1313 - 1338
  • [34] The polynomial Daugavet property for atomless L1(μ)-spaces
    Martin, Miguel
    Meri, Javier
    Popov, Mikhail
    ARCHIV DER MATHEMATIK, 2010, 94 (04) : 383 - 389
  • [35] The polynomial Daugavet property for atomless L1(μ)-spaces
    Miguel Martín
    Javier Merí
    Mikhail Popov
    Archiv der Mathematik, 2010, 94 : 383 - 389
  • [36] Geometry of Banach spaces with property β
    A. S. Granero
    M. Jiménez Sevilla
    J. P. Moreno
    Israel Journal of Mathematics, 1999, 111 : 263 - 273
  • [37] Banach Spaces with the PC Property
    V. I. Rybakov
    Mathematical Notes, 2004, 76 : 525 - 533
  • [38] A relative version of Daugavet points and the Daugavet property
    Abrahamsen, Trond A.
    Aliaga, Ramon J.
    Lima, Vegard
    Martiny, Andre
    Perreau, Yoel
    Prochazka, Antonin
    Veeorg, Triinu
    STUDIA MATHEMATICA, 2024, 279 (03)
  • [39] Note on a property of the Banach spaces
    Freire, Nuno C.
    Veiga, Maria Fernanda
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2012, 57 (01): : 107 - 110
  • [40] The (D) Property in Banach Spaces
    Soybas, Danyal
    ABSTRACT AND APPLIED ANALYSIS, 2012,