An RGB-D Visual Application for Error Detection in Robot Grasping Tasks

被引:2
|
作者
Martinez-Martin, Ester [1 ]
Fischinger, David [2 ]
Vincze, Markus [2 ]
del Pobil, Angel P. [1 ]
机构
[1] UJI, Robot Intelligence Lab, Avda Sos Baynat S-N, Castellon de La Plana 12071, Spain
[2] Vienna Univ Technol TU Wien, Dept Elect Engn, Inst Automatisierungs & Regelungstech ACIN, Gusshausstr 27-29, A-1040 Vienna, Austria
来源
关键词
Service robotics; Grasping; Computer vision; RECOGNITION; MANIPULATION;
D O I
10.1007/978-3-319-48036-7_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The ability to grasp is a fundamental requirement for service robots in order to perform meaningful tasks in ordinary environments. However, its robustness can be compromised by the inaccuracy (or lack) of tactile and proprioceptive sensing, especially in the presence of unforeseen slippage. As a solution, vision can be instrumental in detecting grasp errors. In this paper, we present an RGB-D visual application for discerning the success or failure in robot grasping of unknown objects, when a poor proprioceptive information and/or a deformable gripper without tactile information is used. The proposed application is divided into two stages: the visual gripper detection and recognition, and the grasping assessment (i.e. checking whether a grasping error has occurred). For that, three different visual cues are combined: colour, depth and edges. This development is supported by the experimental results on the Hobbit robot which is provided with an elastically deformable gripper.
引用
收藏
页码:243 / 254
页数:12
相关论文
共 50 条
  • [41] Unsupervised Deep Visual-Inertial Odometry with Online Error Correction for RGB-D Imagery
    Shamwell, E. Jared
    Lindgren, Kyle
    Leung, Sarah
    Nothwang, William D.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (10) : 2478 - 2493
  • [42] RGB-D Sensor-based Visual SLAM for Localization and Navigation of Indoor Mobile Robot
    Yuan, Wang
    Li, Zhijun
    Su, Chun-Yi
    IEEE ICARM 2016 - 2016 INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND MECHATRONICS (ICARM), 2016, : 82 - 87
  • [43] 6D Visual SLAM for RGB-D Sensors
    Endres, Felix
    Hess, Juergen
    Engelhard, Nikolas
    Sturm, Juergen
    Burgard, Wolfram
    AT-AUTOMATISIERUNGSTECHNIK, 2012, 60 (05) : 270 - 278
  • [44] RGB-D Camera based 3D Object Pose Estimation and Grasping
    Liang, Xiaoxiao
    Cheng, Hongtai
    2019 9TH IEEE ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (IEEE-CYBER 2019), 2019, : 1279 - 1284
  • [45] RGB-D Visual Odometry Combined with Points and Lines
    Lu Junxin
    Fang Zhijun
    Chen Jieyu
    Gao Yongbin
    ACTA OPTICA SINICA, 2021, 41 (04)
  • [46] VISUAL ODOMETRY FOR RGB-D CAMERAS FOR DYNAMIC SCENES
    Azartash, Haleh
    Lee, Kyoung-Rok
    Nguyen, Truong Q.
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [47] Analysis of Compact Features for RGB-D Visual Search
    Petrelli, Alioscia
    Pau, Danilo
    Di Stefano, Luigi
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2015, PT II, 2015, 9280 : 14 - 24
  • [48] RGB-D salient object detection: A survey
    Tao Zhou
    Deng-Ping Fan
    Ming-Ming Cheng
    Jianbing Shen
    Ling Shao
    ComputationalVisualMedia, 2021, 7 (01) : 37 - 69
  • [49] RGB-D salient object detection: A survey
    Zhou, Tao
    Fan, Deng-Ping
    Cheng, Ming-Ming
    Shen, Jianbing
    Shao, Ling
    COMPUTATIONAL VISUAL MEDIA, 2021, 7 (01) : 37 - 69
  • [50] Adaptive Visual Odometry Using RGB-D Cameras
    Fabian, Joshua R.
    Clayton, Garrett M.
    2014 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2014, : 1533 - 1538