CLEAN: Leveraging spatial autocorrelation in neuroimaging data in clusterwise inference

被引:4
|
作者
Park, Jun Young [1 ,2 ]
Fiecas, Mark [3 ]
机构
[1] Univ Toronto, Dept Stat Sci, Toronto, ON M5S, Canada
[2] Univ Toronto, Dept Psychol, Toronto M5S, ON, Canada
[3] Univ Minnesota, Div Biostat, Sch Publ Hlth, Minneapolis, MN 55455 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Cluster inference; Task-fMRI; Group-level activation; Neuroimaging data analysis; Resampling; Spatial autocorrelation modelling; PROCESS MODELS; FMRI; ASSOCIATION; DEPENDENCE; REGRESSION; EXTENT;
D O I
10.1016/j.neuroimage.2022.119192
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
While clusterwise inference is a popular approach in neuroimaging that improves sensitivity, current methods do not account for explicit spatial autocorrelations because most use univariate test statistics to construct cluster extent statistics. Failure to account for such dependencies could result in decreased reproducibility. To address methodological and computational challenges, we propose a new powerful and fast statistical method called CLEAN (Clusterwise inference Leveraging spatial Autocorrelations in Neuroimaging). CLEAN computes multivariate test statistics by modelling brain-wise spatial autocorrelations, constructs cluster-extent test statistics, and applies a refitting-free resampling approach to control false positives. We validate CLEAN using simulations and applications to the Human Connectome Project. This novel method provides a new direction in neuroimaging that paces with advances in high-resolution MRI data which contains a substantial amount of spatial autocorrelation.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Spatiotemporal Bayesian inference dipole analysis for MEG neuroimaging data
    Jun, SC
    George, JS
    Paré-Blagoev, J
    Plis, SM
    Ranken, DM
    Schmidt, DM
    Wood, CC
    NEUROIMAGE, 2005, 28 (01) : 84 - 98
  • [22] Explainable Spatial Clustering: Leveraging Spatial Data in Radiation Oncology
    Wentzel, Andrew
    Canahuate, Guadalupe
    van Dijk, Lisanne, V
    Mohamed, Abdallah S. R.
    Fuller, C. David
    Marai, G. Elisabeta
    2020 IEEE VISUALIZATION CONFERENCE - SHORT PAPERS (VIS 2020), 2020, : 281 - 285
  • [23] MODELING SPATIAL AUTOCORRELATION IN SPATIAL INTERACTION DATA: AN APPLICATION TO PATENT CITATION DATA IN THE EUROPEAN UNION
    Fischer, Manfred M.
    Griffith, Daniel A.
    JOURNAL OF REGIONAL SCIENCE, 2008, 48 (05) : 969 - 989
  • [24] Reinforced Borrowing Framework: Leveraging Auxiliary Data for Individualized Inference
    Ji, Ziyu
    Wolfson, Julian
    STATISTICS IN MEDICINE, 2024, 43 (30) : 5837 - 5848
  • [25] Spatial autocorrelation for massive spatial data: verification of efficiency and statistical power asymptotics
    Luo, Qing
    Griffith, Daniel A.
    Wu, Huayi
    JOURNAL OF GEOGRAPHICAL SYSTEMS, 2019, 21 (02) : 237 - 269
  • [26] Analysis of Spatial Autocorrelation for Traffic Accident Data based on Spatial Decision Tree
    Ghimire, Bimal
    Bhattacharjee, Shrutilipi
    Ghosh, Soumya K.
    2013 FOURTH INTERNATIONAL CONFERENCE ON COMPUTING FOR GEOSPATIAL RESEARCH AND APPLICATION (COM.GEO), 2013, : 111 - 115
  • [27] Spatial autocorrelation for massive spatial data: verification of efficiency and statistical power asymptotics
    Qing Luo
    Daniel A. Griffith
    Huayi Wu
    Journal of Geographical Systems, 2019, 21 : 237 - 269
  • [28] Difference-in-differences techniques for spatial data: Local autocorrelation and spatial interaction
    Delgado, Michael S.
    Florax, Raymond J. G. M.
    ECONOMICS LETTERS, 2015, 137 : 123 - 126
  • [29] Quadrat size dependence, spatial autocorrelation and the classification of community data
    J. Podani
    P. Csontos
    Community Ecology, 2006, 7 : 117 - 127
  • [30] Spatial autocorrelation and data uncertainty in the American Community Survey: a critique
    Jung, Paul H.
    Thill, Jean-Claude
    Issel, Michele
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2019, 33 (06) : 1155 - 1175