SPANNING TREES AND RANDOM WALKS ON WEIGHTED GRAPHS

被引:23
|
作者
Chang, Xiao [1 ]
Xu, Hao [1 ]
Yau, Shing-Tung [2 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[2] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
hitting time; random walk; spanning tree; DISCRETE GREENS-FUNCTIONS;
D O I
10.2140/pjm.2015.273.241
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using two graph invariants arising from Chung and Yau's discrete Green's function, we derive explicit formulas and new estimates of hitting times of random walks on weighted graphs through the enumeration of spanning trees.
引用
收藏
页码:241 / 255
页数:15
相关论文
共 50 条
  • [21] Minimal spanning trees for graphs with random edge lengths
    Steele, JM
    MATHEMATICS AND COMPUTER SCIENCE II: ALGORITHMS, TREES, COMBINATORICS AND PROBABILITIES, 2002, : 223 - 245
  • [22] Full degree spanning trees in random regular graphs
    Acquaviva, Sarah
    Bal, Deepak
    DISCRETE APPLIED MATHEMATICS, 2024, 353 : 85 - 93
  • [23] Local Resilience of Almost Spanning Trees in Random Graphs
    Balogh, Jozsef
    Csaba, Bela
    Samotij, Wojciech
    RANDOM STRUCTURES & ALGORITHMS, 2011, 38 (1-2) : 121 - 139
  • [24] On minimum spanning trees for random Euclidean bipartite graphs
    Correddu, Mario
    Trevisan, Dario
    COMBINATORICS PROBABILITY AND COMPUTING, 2024, 33 (03) : 319 - 350
  • [25] Spanning trees in random series-parallel graphs
    Ehrenmueller, Julia
    Rue, Juanjo
    ADVANCES IN APPLIED MATHEMATICS, 2016, 75 : 18 - 55
  • [26] Random walks pertaining to a class of deterministic weighted graphs
    Huillet, Thierry
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (27)
  • [27] INTERLACINGS FOR RANDOM WALKS ON WEIGHTED GRAPHS AND THE INTERCHANGE PROCESS
    Dieker, A. B.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (01) : 191 - 206
  • [28] Phase transition for random walks on graphs with added weighted random matching
    Baran, Zsuzsanna
    Hermon, Jonathan
    Sarkovic, Andela
    Sousi, Perla
    PROBABILITY THEORY AND RELATED FIELDS, 2024,
  • [29] LOOP-ERASED RANDOM WALKS, SPANNING TREES AND HAMILTONIAN CYCLES
    Marchal, Philippe
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2000, 5 : 39 - 50
  • [30] Weighted spanning trees on some self-similar graphs
    D'Angeli, Daniele
    Donno, Alfredo
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):