SPANNING TREES AND RANDOM WALKS ON WEIGHTED GRAPHS

被引:23
|
作者
Chang, Xiao [1 ]
Xu, Hao [1 ]
Yau, Shing-Tung [2 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[2] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
hitting time; random walk; spanning tree; DISCRETE GREENS-FUNCTIONS;
D O I
10.2140/pjm.2015.273.241
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using two graph invariants arising from Chung and Yau's discrete Green's function, we derive explicit formulas and new estimates of hitting times of random walks on weighted graphs through the enumeration of spanning trees.
引用
收藏
页码:241 / 255
页数:15
相关论文
共 50 条
  • [2] Random Spanning Trees and the Prediction of Weighted Graphs
    Cesa-Bianchi, Nicolo
    Gentile, Claudio
    Vitale, Fabio
    Zappella, Giovanni
    JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 1251 - 1284
  • [3] Spanning trees from the commute times of random walks on graphs
    Qiu, Huaijun
    Hancock, Edwin R.
    IMAGE ANALYSIS AND RECOGNITION, PT 2, 2006, 4142 : 375 - 385
  • [4] Non-uniform random spanning trees on weighted graphs
    Mosbah, M
    Saheb, N
    THEORETICAL COMPUTER SCIENCE, 1999, 218 (02) : 263 - 271
  • [5] Spanning trees in random graphs
    Montgomery, Richard
    ADVANCES IN MATHEMATICS, 2019, 356
  • [6] ON THE SPANNING-TREES OF WEIGHTED GRAPHS
    MAYR, EW
    PLAXTON, CG
    COMBINATORICA, 1992, 12 (04) : 433 - 447
  • [7] ON THE SPANNING-TREES OF WEIGHTED GRAPHS
    MAYR, EW
    PLAXTON, CG
    LECTURE NOTES IN COMPUTER SCIENCE, 1989, 344 : 394 - 405
  • [8] Random Selection of Spanning Trees on Graphs
    Luis Perez-Perez, Sergio
    Benito Morales-Luna, Guillermo
    Davino Sagols-Troncoso, Feliu
    COMPUTACION Y SISTEMAS, 2012, 16 (04): : 457 - 469
  • [9] EMBEDDING SPANNING TREES IN RANDOM GRAPHS
    Krivelevich, Michael
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (04) : 1495 - 1500
  • [10] Shortest spanning trees and a counterexample for random walks in random environments
    Bramson, Maury
    Zeitouni, Ofer
    Zerner, Martin P. W.
    ANNALS OF PROBABILITY, 2006, 34 (03): : 821 - 856