Design of auxiliary model and hierarchical normalized fractional adaptive algorithms for parameter estimation of bilinear-in-parameter systems

被引:1
|
作者
Zhu, Yancheng [1 ,2 ,3 ]
Wu, Huaiyu [1 ,3 ]
Chen, Zhihuan [1 ,3 ]
Chen, Yang [1 ,3 ]
Zheng, Xiujuan [1 ,3 ]
机构
[1] Wuhan Univ Sci & Technol, Engn Res Ctr Met Automat & Measurement Technol, Minist Educ, Wuhan, Peoples R China
[2] Wuhan Univ Sci & Technol, Coll Sci, Wuhan, Peoples R China
[3] Wuhan Univ Sci & Technol, Inst Robot & Intelligent Syst, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
auxiliary model; bilinear-in-parameter system; fractional adaptive algorithms; hierarchical identification; parameter estimation; LMS ALGORITHM; ORDER; IDENTIFICATION; STRATEGY; NOISE;
D O I
10.1002/acs.3471
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study investigates the parameter identification issues of bilinear-in-parameter systems through fractional adaptive algorithms. An auxiliary model based epsilon-normalized$$ \varepsilon \hbox{-} \mathrm{normalized} $$ modified fractional least mean square algorithm is proposed for accelerating the parameter estimation accuracy based on the auxiliary model identification idea and the introduced convergence index, a normalized modified hierarchical fractional least mean square algorithm is presented for improving the computational efficiency based on the hierarchical identification principle. The proposed normalized fractional adaptive strategies are effective and could provide more accurate parameter estimates comparing with conventional counterparts for bilinear-in-parameter identification model based on the mean square error metrics and the average predicted output error. The effectiveness and accuracy of the proposed algorithms are further verified and validated through numerical simulations for different noise variances, fractional orders and gain parameters.
引用
收藏
页码:2562 / 2584
页数:23
相关论文
共 50 条
  • [31] Iterative state and parameter estimation algorithms for bilinear state-space systems by using the block matrix inversion and the hierarchical principle
    Siyu Liu
    Feng Ding
    Erfu Yang
    Nonlinear Dynamics, 2021, 106 : 2183 - 2202
  • [32] Iterative state and parameter estimation algorithms for bilinear state-space systems by using the block matrix inversion and the hierarchical principle
    Liu, Siyu
    Ding, Feng
    Yang, Erfu
    NONLINEAR DYNAMICS, 2021, 106 (03) : 2183 - 2202
  • [33] Recursive algorithms for parameter estimation with adaptive quantizer
    You, Keyou
    AUTOMATICA, 2015, 52 : 192 - 201
  • [34] Recursive parameter estimation and its convergence for bilinear systems
    Zhang, Xiao
    Ding, Feng
    IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (05): : 677 - 688
  • [35] Maximum-likelihood parameter estimation of bilinear systems
    Gibson, S
    Wills, A
    Ninness, B
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (10) : 1581 - 1596
  • [36] Hierarchical Stochastic Gradient Parameter Estimation Algorithms for Multivariable Systems with Colored Noises
    Ding, Feng
    Liu, Yanjun
    2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, : 3830 - 3835
  • [37] Adaptive Observer Design and Parameter Estimation for a Class of Uncertain Systems
    Zhou, Jing
    PROCEEDINGS OF THE 2013 IEEE 8TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2013, : 148 - 153
  • [38] Adaptive Parameter Estimation in LTI Systems
    Kapetina, Mirna N.
    Rapaic, Milan R.
    Pisano, Alessandro
    Jelicic, Zoran D.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (10) : 4188 - 4195
  • [39] Multiple Model Adaptive Estimation Algorithm for Systems with Parameter Change
    Soken, Halil Ersin
    Sakai, Shin-ichiro
    2016 55TH ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS OF JAPAN (SICE), 2016, : 1718 - 1723
  • [40] Parameter estimation based adaptive auxiliary channel receiver method
    Gong, J. (gongjiling1988@163.com), 1600, Science Press (41):