A New Spatio-Temporal Neural Network Approach for Traffic Accident Forecasting

被引:4
|
作者
de Medrano, Rodrigo [1 ]
Aznarte, Jose L. [1 ]
机构
[1] Univ Nacl Educ Distancia UNED, Artificial Intelligence Dept, Madrid 28041, Spain
关键词
CRASH-FREQUENCY; OPTIMIZATION; CLASSIFICATION; SEVERITY; MODELS;
D O I
10.1080/08839514.2021.1935588
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traffic accidents forecasting represents a major priority for traffic governmental organisms around the world to ensure a decrease in life, property, and economic losses. The increasing amounts of traffic accident data have been used to train machine learning predictors, although this is a challenging task due to the relative rareness of accidents, inter-dependencies of traffic accidents both in time and space, and high dependency on human behavior. Recently, deep learning techniques have shown significant prediction improvements over traditional models, but some difficulties and open questions remain around their applicability, accuracy, and ability to provide practical information. This paper proposes a new spatio-temporal deep learning framework based on a latent model for simultaneously predicting the number of traffic accidents in each neighborhood in Madrid, Spain, over varying training and prediction time horizons.
引用
收藏
页码:782 / 801
页数:20
相关论文
共 50 条
  • [31] Spatio-Temporal Graph Attention Convolution Network for Traffic Flow Forecasting
    Liu, Kun
    Zhu, Yifan
    Wang, Xiao
    Ji, Hongya
    Huang, Chengfei
    TRANSPORTATION RESEARCH RECORD, 2024, 2678 (09) : 136 - 149
  • [32] STANN: A Spatio-Temporal Attentive Neural Network for Traffic Prediction
    He, Zhixiang
    Chow, Chi-Yin
    Zhang, Jia-Dong
    IEEE ACCESS, 2019, 7 : 4795 - 4806
  • [33] A Spatio-Temporal Tree and Gauss Convolutional Network for Traffic Flow Forecasting
    Ma, Zhaobin
    Lv, Zhiqiang
    Li, Jianbo
    Xia, Fengqian
    2023 19TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING, MSN 2023, 2023, : 722 - 729
  • [34] DMGSTCN: Dynamic Multigraph Spatio-Temporal Convolution Network for Traffic Forecasting
    Qin, Yanjun
    Tao, Xiaoming
    Fang, Yuchen
    Luo, Haiyong
    Zhao, Fang
    Wang, Chenxing
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (12): : 22208 - 22219
  • [35] Advancing urban traffic accident forecasting through sparse spatio-temporal dynamic learning
    Cui, Pengfei
    Yang, Xiaobao
    Abdel-Aty, Mohamed
    Zhang, Jinlei
    Yan, Xuedong
    ACCIDENT ANALYSIS AND PREVENTION, 2024, 200
  • [36] Spatio-Temporal Pyramid Networks for Traffic Forecasting
    Hu, Jia
    Wang, Chu
    Lin, Xianghong
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT I, 2023, 14169 : 339 - 354
  • [37] MLP for Spatio-Temporal Traffic Volume Forecasting
    Dimara, Asimina
    Triantafyllidis, Dimitrios
    Krinidis, Stelios
    Kitsikoudis, Konstantinos
    Ioannidis, Dimosthenis
    Valkouma, Efthalia
    Skarvelakis, Stilianos
    Antipas, Stavros
    Tzovaras, Dimitrios
    2021 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS), 2021, : 764 - 770
  • [38] Traffic Accident Hotspot Prediction Using Temporal Convolutional Networks: A Spatio-Temporal Approach
    Yeddula, Sai Deepthi
    Jiang, Chen
    Hui, Bo
    Ku, Wei-Shinn
    31ST ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS, ACM SIGSPATIAL GIS 2023, 2023, : 305 - 308
  • [39] Spatio-temporal graph mixformer for traffic forecasting
    Lablack, Mourad
    Shen, Yanming
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 228
  • [40] Spatio-temporal evolution of traffic accident hotspots under road network constraints
    Shimin Fang
    Shuai Guo
    Yuejian Gong
    Zhanjun He
    Baode Jiang
    Earth Science Informatics, 2025, 18 (2)