Fast High-Dimensional Filtering Using the Permutohedral Lattice

被引:294
|
作者
Adams, Andrew [1 ]
Baek, Jongmin [1 ]
Davis, Myers Abraham [1 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
关键词
I.4.3 [Image Processing and Computer Vision]: Enhancement - Filtering;
D O I
10.1111/j.1467-8659.2009.01645.x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Many useful algorithms for processing images and geometry fall under the general framework of high-dimensional Gaussian filtering. This family of algorithms includes bilateral filtering and non-local means. We propose a new way to perform such filters using the permutohedral lattice, which tessellates high-dimensional space with uniform simplices. Our algorithm is the first implementation of a high-dimensional Gaussian filter that is both linear in input size and polynomial in dimensionality. Furthermore it is parameter-free, apart from the filter size, and achieves a consistently high accuracy relative to ground truth (> 45 dB). We use this to demonstrate a number of interactive-rate applications of filters in as high as eight dimensions.
引用
收藏
页码:753 / 762
页数:10
相关论文
共 50 条
  • [21] Localization in High-Dimensional Monte Carlo Filtering
    Robert, Sylvain
    Kuensch, Hans R.
    BAYESIAN STATISTICS IN ACTION, BAYSM 2016, 2017, 194 : 79 - 89
  • [22] Smart particle filtering for high-dimensional tracking
    Bray, M.
    Koller-Meier, E.
    Van Gool, L.
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2007, 106 (01) : 116 - 129
  • [23] Aspects of Particle Filtering in High-Dimensional Spaces
    van Leeuwen, Peter Jan
    DYNAMIC DATA-DRIVEN ENVIRONMENTAL SYSTEMS SCIENCE, DYDESS 2014, 2015, 8964 : 251 - 262
  • [24] Particle filtering in high-dimensional chaotic systems
    Lingala, Nishanth
    Namachchivaya, N. Sri
    Perkowski, Nicolas
    Yeong, Hoong C.
    CHAOS, 2012, 22 (04)
  • [25] Voronoi Constellations for High-Dimensional Lattice Codes
    Ferdinand, Nuwan S.
    Noklehy, Matthew
    Aazhang, Behnaam
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 1506 - 1510
  • [26] Visualizing High-Dimensional Structures by Dimension Ordering and Filtering using Subspace Analysis
    Ferdosi, Bilkis J.
    Roerdink, Jos B. T. M.
    COMPUTER GRAPHICS FORUM, 2011, 30 (03) : 1121 - 1130
  • [27] Visualizing high-dimensional structures by dimension ordering and filtering using subspace analysis
    Ferdosi, Bilkis J.
    Roerdink, Jos B. T. M.
    Eurovis: Eurographics/IEEE Symposium on Visualization, 2011, 30 (03): : 1121 - 1130
  • [28] Erratum to: Fast integer least-squares estimation for GNSS high-dimensional ambiguity resolution using lattice theory
    S. Jazaeri
    A. R. Amiri-Simkooei
    M. A. Sharifi
    Journal of Geodesy, 2012, 86 (2) : 137 - 137
  • [29] Low-Dimensional Shaping for High-Dimensional Lattice Codes
    Ferdinand, Nuwan S.
    Kurkoski, Brian M.
    Nokleby, Matthew
    Aazhang, Behnaam
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2016, 15 (11) : 7405 - 7418
  • [30] Efficient High-Dimensional, Edge-Aware Filtering
    Lopes Gastal, Eduardo Simoes
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2016, 36 (06) : 86 - 95