Towards an Integrated Cyberinfrastructure for Scalable Data-driven Monitoring, Dynamic Prediction and Resilience of Wildfires

被引:29
|
作者
Altintas, Ilkay [1 ]
Block, Jessica [2 ]
de Callafon, Raymond [3 ]
Crawl, Daniel [1 ]
Cowart, Charles [1 ]
Gupta, Amarnath [1 ]
Nguyen, Mai [1 ]
Braun, Hans-Werner [1 ]
Schulze, Jurgen [2 ]
Gollner, Michael [4 ]
Trouve, Arnaud [4 ]
Smarr, Larry [2 ]
机构
[1] Univ Calif San Diego, San Diego Supercomp Ctr, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Qualcomm Inst, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
[4] Univ Maryland, Fire Protect Engn Dept, College Pk, MD USA
基金
美国国家科学基金会;
关键词
Cyberinfrastructure; Data Assimilation; Workflows; Wildfire Modeling; Scientific Data Integration; MODEL;
D O I
10.1016/j.procs.2015.05.296
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Wildfires are critical for ecosystems in many geographical regions. However, our current urbanized existence in these environments is inducing the ecological balance to evolve into a different dynamic leading to the biggest fires in history. Wildfire wind speeds and directions change in an instant, and first responders can only be effective if they take action as quickly as the conditions change. What is lacking in disaster management today is a system integration of real-time sensor networks, satellite imagery, near-real time data management tools, wildfire simulation tools, and connectivity to emergency command centers before, during and after a wildfire. As a first time example of such an integrated system, the WIFIRE project is building an end-to-end cyberinfrastructure for real-time and data-driven simulation, prediction and visualization of wildfire behavior. This paper summarizes the approach and early results of the WIFIRE project to integrate networked observations, e. g., heterogeneous satellite data and real-time remote sensor data with computational techniques in signal processing, visualization, modeling and data assimilation to provide a scalable, technological, and educational solution to monitor weather patterns to predict a wildfire's Rate of Spread.
引用
收藏
页码:1633 / 1642
页数:10
相关论文
共 50 条
  • [31] On the performance of data-driven dynamic models for temperature compensation on bridge monitoring data
    Radicioni, Luca
    Giorgi, Viviana
    Benedetti, Lorenzo
    Bono, Francesco Morgan
    Pagani, Stefano
    Cinquemani, Simone
    Belloli, Marco
    JOURNAL OF CIVIL STRUCTURAL HEALTH MONITORING, 2025,
  • [32] Towards a data-driven behavioral approach to prediction of insider-threat
    Basu, Subhasree
    Chua, Yi Han Victoria
    Lee, Mei Wah
    Lim, Wanyu Geraldine
    Maszczyk, Tomasz
    Guo, Zheng
    Dauwels, Justin
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 4994 - 5001
  • [33] Towards dynamic data-driven management of the Ruby Gulch Waste Repository
    Parashar, Manish
    Matossian, Vincent
    Klie, Hector
    Thomas, Sunil G.
    Wheeler, Mary F.
    Kurc, Tahsin
    Saltz, Joel
    Versteeg, Roelof
    COMPUTATIONAL SCIENCE - ICCS 2006, PT 3, PROCEEDINGS, 2006, 3993 : 384 - 392
  • [34] A Data-Driven Prediction Framework for Analyzing and Monitoring Business Process Performances
    Bevacqua, Antonio
    Carnuccio, Marco
    Folino, Francesco
    Guarascio, Massimo
    Pontieri, Luigi
    ENTERPRISE INFORMATION SYSTEMS, ICEIS 2013, 2014, 190 : 100 - 117
  • [35] INDUSTRIAL GAS TURBINE OPERATING PARAMETERS MONITORING AND DATA-DRIVEN PREDICTION
    Pawelczyk, Maciej
    Fulara, Szymon
    Sepe, Marzia
    De Luca, Alessandro
    Badora, Maciej
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2020, 22 (03): : 391 - 399
  • [36] A data-driven dynamic ontology
    Fudholi, Dhomas Hatta
    Rahayu, Wenny
    Pardede, Eric
    JOURNAL OF INFORMATION SCIENCE, 2015, 41 (03) : 383 - 398
  • [37] Towards a Data-Driven Estimation of Resilience in Networked Dynamical Systems: Designing a Versatile Testbed
    Fischer, Tobias
    Rings, Thorsten
    Tabar, M. Reza Rahimi
    Lehnertz, Klaus
    FRONTIERS IN NETWORK PHYSIOLOGY, 2022, 2
  • [38] Data-driven Process Monitoring Method Based on Dynamic Component Analysis
    Zhang Guangming
    Li Ning
    Li Shaoyuan
    2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 5288 - 5293
  • [39] Structural Performance Monitoring Using a Dynamic Data-Driven BIM Environment
    Delgado, Juan Manuel Davila
    Butler, Liam J.
    Brilakis, Ioannis
    Elshafie, Mohammed Z. E. B.
    Middleton, Campbell R.
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2018, 32 (03)
  • [40] A Data-Driven Process Monitoring Approach for Dynamic Processes with Deterministic Disturbance
    Luo, Hao
    Huo, Mingyi
    Li, Kuan
    Yin, Shen
    2018 IEEE 27TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2018, : 939 - 944