Sensitivity analysis of random two-body interactions

被引:2
|
作者
Johnson, Calvin W. [1 ]
Krastev, Plamen G. [1 ,2 ]
机构
[1] San Diego State Univ, Dept Phys, San Diego, CA 92182 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
关键词
ORDERLY SPECTRA; NUCLEAR; SHELL; SYSTEMS; FORCES;
D O I
10.1103/PhysRevC.81.054303
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The input to the configuration-interaction shell model includes many dozens or hundreds of independent two-body matrix elements. Previous studies have shown that when fitting to experimental low-lying spectra, the greatest sensitivity is to only a few linear combinations of matrix elements. Here we consider interactions drawn from the two-body random ensemble and find that the low-lying spectra are also most sensitive to only a few linear combinations of two-body matrix elements, in a fashion nearly indistinguishable from an interaction empirically fit to data. We find in particular the spectra for both random and empirical interactions are sensitive to similar matrix elements, which we analyze using monopole and contact interactions.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Two-body tensor interactions in the nuclear matter response function
    Besprosvany, J
    REVISTA MEXICANA DE FISICA, 1997, 43 : 160 - 168
  • [42] Analysis of the nonleptonic two-body decays of the Λ hyperon
    Ivanov, Mikhail A.
    Koerner, Juergen G.
    Lyubovitskij, Valery E.
    Tyulemissov, Zhomart
    PHYSICAL REVIEW D, 2021, 104 (07)
  • [43] Trapping effects on short-range two-body interactions
    Rosales-Zarate, L. E. C.
    Jauregui, R.
    REVISTA MEXICANA DE FISICA, 2009, 55 (03) : 221 - 225
  • [44] Two-body contributions to the effective mass in nuclear effective interactions
    Davesne, D.
    Navarro, J.
    Meyer, J.
    Bennaceur, K.
    Pastore, A.
    PHYSICAL REVIEW C, 2018, 97 (04)
  • [45] Relationships between three-body and two-body interactions in fluids and solids
    Wang, Liping
    Sadus, Richard J.
    JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (14):
  • [46] One plus two-body random matrix ensemble with spin: Analysis using spectral variances
    Kota, V. K. B.
    Chavda, N. D.
    Sahu, R.
    PHYSICS LETTERS A, 2006, 359 (05) : 381 - 389
  • [47] Symmetry analysis of charmonium two-body decay
    Mo, X. H.
    Wang, P.
    Zhang, J. Y.
    PHYSICAL REVIEW D, 2023, 107 (09)
  • [48] The two-body problem
    DeFrancesco, L
    Wilkinson, D
    SCIENTIST, 1999, 13 (08): : 21 - 23
  • [49] Two-body random ensemble in nuclei -: art. no. 014311
    Papenbrock, T
    Weidenmüller, HA
    PHYSICAL REVIEW C, 2006, 73 (01):
  • [50] Chaos in the Bose-Hubbard model and random two-body Hamiltonians
    Pausch, Lukas
    Carnio, Edoardo G.
    Buchleitner, Andreas
    Rodriguez, Alberto
    NEW JOURNAL OF PHYSICS, 2021, 23 (12)