Inference of cancer progression from somatic mutation data

被引:1
|
作者
Wu, Hao [1 ,2 ,3 ]
Gao, Lin [1 ]
Kasabov, Nikola [3 ]
机构
[1] Xidian Univ, Sch Comp Sci & Technol, Xian, Shaanxi, Peoples R China
[2] Northwest A&F Univ, Coll Informat Engn, Yangling, Shaanxi, Peoples R China
[3] Auckland Univ Technol, Knowledge Engn & Discovery Res Inst, Auckland, New Zealand
来源
IFAC PAPERSONLINE | 2015年 / 48卷 / 28期
关键词
Cancer genome; Cancer progression; Network models; Dynamic problem; Driver mutation; DRIVER PATHWAYS; TUMOR PROGRESSION; TREE MODELS;
D O I
10.1016/j.ifacol.2015.12.131
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Large-scale cancer genomics projects are providing a wealth of somatic mutation data. Therefore, one of the most challenging problems arising from the data is to infer the temporal order of somatic mutations. In the paper, we present a network-based method (NetInf) to infer cancer progression at the pathway level. We apply it to analyze somatic mutation data from real cancer studies. Experimental results show that these detected pathways overlap with known pathways, including RB, P53 signaling pathways. Our method reduces computational complexity and also provides new insights on the temporal order of somatic mutations at the pathway level. (C) 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:234 / 238
页数:5
相关论文
共 50 条
  • [41] Detecting somatic point mutations in cancer genome sequencing data: a comparison of mutation callers
    Wang, Qingguo
    Jia, Peilin
    Li, Fei
    Chen, Haiquan
    Ji, Hongbin
    Hucks, Donald
    Dahlman, Kimberly Brown
    Pao, William
    Zhao, Zhongming
    GENOME MEDICINE, 2013, 5
  • [42] Somatic deleterious mutation rate in a woody plant: estimation from phenotypic data
    Bobiwash, K.
    Schultz, S. T.
    Schoen, D. J.
    HEREDITY, 2013, 111 (04) : 338 - 344
  • [43] Somatic deleterious mutation rate in a woody plant: estimation from phenotypic data
    K Bobiwash
    S T Schultz
    D J Schoen
    Heredity, 2013, 111 : 338 - 344
  • [44] Achieving robust somatic mutation detection with deep learning models derived from reference data sets of a cancer sample
    Sahraeian, Sayed Mohammad Ebrahim
    Fang, Li Tai
    Karagiannis, Konstantinos
    Moos, Malcolm
    Smith, Sean
    Santana-Quintero, Luis
    Xiao, Chunlin
    Colgan, Michael
    Hong, Huixiao
    Mohiyuddin, Marghoob
    Xiao, Wenming
    GENOME BIOLOGY, 2022, 23 (01)
  • [45] Achieving robust somatic mutation detection with deep learning models derived from reference data sets of a cancer sample
    Sayed Mohammad Ebrahim Sahraeian
    Li Tai Fang
    Konstantinos Karagiannis
    Malcolm Moos
    Sean Smith
    Luis Santana-Quintero
    Chunlin Xiao
    Michael Colgan
    Huixiao Hong
    Marghoob Mohiyuddin
    Wenming Xiao
    Genome Biology, 23
  • [46] OncoClassify: Somatic Mutation Classification in Cancer Genomics
    Morgan, Claire
    Matalonga, Leslie
    Dieguez, Joel
    Tonda, Raul
    Parra, Genis
    Gut, Ivo
    Beltran, Sergi
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2024, 32 : 1651 - 1651
  • [47] Patterns of somatic mutation in human cancer genomes
    Stratton, Mike
    JOURNAL OF MEDICAL GENETICS, 2006, 43 : S39 - S39
  • [48] Patterns of somatic mutation in human cancer genomes
    Stratton, Michael
    CHROMOSOME RESEARCH, 2009, 17 : 16 - 16
  • [49] The somatic autosomal mutation matrix in cancer genomes
    Temiz, Nuri A.
    Donohue, Duncan E.
    Bacolla, Albino
    Vasquez, Karen M.
    Cooper, David N.
    Mudunuri, Uma
    Ivanic, Joseph
    Cer, Regina Z.
    Yi, Ming
    Stephens, Robert M.
    Collins, Jack R.
    Luke, Brian T.
    HUMAN GENETICS, 2015, 134 (08) : 851 - 864
  • [50] Somatic Mutation Leading to Diffuse Gastric Cancer
    Checketts, Thomas R.
    Roop, Katrina
    Roop, Jay
    AMERICAN JOURNAL OF GASTROENTEROLOGY, 2021, 116 : S1310 - S1311