Inference of cancer progression from somatic mutation data

被引:1
|
作者
Wu, Hao [1 ,2 ,3 ]
Gao, Lin [1 ]
Kasabov, Nikola [3 ]
机构
[1] Xidian Univ, Sch Comp Sci & Technol, Xian, Shaanxi, Peoples R China
[2] Northwest A&F Univ, Coll Informat Engn, Yangling, Shaanxi, Peoples R China
[3] Auckland Univ Technol, Knowledge Engn & Discovery Res Inst, Auckland, New Zealand
来源
IFAC PAPERSONLINE | 2015年 / 48卷 / 28期
关键词
Cancer genome; Cancer progression; Network models; Dynamic problem; Driver mutation; DRIVER PATHWAYS; TUMOR PROGRESSION; TREE MODELS;
D O I
10.1016/j.ifacol.2015.12.131
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Large-scale cancer genomics projects are providing a wealth of somatic mutation data. Therefore, one of the most challenging problems arising from the data is to infer the temporal order of somatic mutations. In the paper, we present a network-based method (NetInf) to infer cancer progression at the pathway level. We apply it to analyze somatic mutation data from real cancer studies. Experimental results show that these detected pathways overlap with known pathways, including RB, P53 signaling pathways. Our method reduces computational complexity and also provides new insights on the temporal order of somatic mutations at the pathway level. (C) 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:234 / 238
页数:5
相关论文
共 50 条
  • [1] Inference of Cancer Progression With Probabilistic Graphical Model From Cross-Sectional Mutation Data
    Zhang, Wei
    Wang, Shu-Lin
    IEEE ACCESS, 2018, 6 : 22889 - 22898
  • [2] Simultaneous Inference of Cancer Pathways and Tumor Progression from Cross-Sectional Mutation Data
    Raphael, Benjamin J.
    Vandin, Fabio
    RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, RECOMB2014, 2014, 8394 : 250 - 264
  • [3] Simultaneous Inference of Cancer Pathways and Tumor Progression from Cross-Sectional Mutation Data
    Raphael, Benjamin J.
    Vandin, Fabio
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2015, 22 (06) : 510 - 527
  • [4] Network-Based Inference of Cancer Progression from Microarray Data
    Park, Yongjin
    Shackney, Stanley
    Schwartz, Russell
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2009, 6 (02) : 200 - 212
  • [5] Network-based inference of cancer progression from microarray data
    Park, Yongjin
    Shackney, Stanley
    Schwartz, Russell
    BIOINFORMATICS RESEARCH AND APPLICATIONS, 2008, 4983 : 268 - +
  • [6] Cancer subtype identification using somatic mutation data
    Kuijjer, Marieke Lydia
    Paulson, Joseph Nathaniel
    Salzman, Peter
    Ding, Wei
    Quackenbush, John
    BRITISH JOURNAL OF CANCER, 2018, 118 (11) : 1492 - 1501
  • [7] Cancer subtype identification using somatic mutation data
    Marieke Lydia Kuijjer
    Joseph Nathaniel Paulson
    Peter Salzman
    Wei Ding
    John Quackenbush
    British Journal of Cancer, 2018, 118 : 1492 - 1501
  • [8] HIERARCHICAL BAYESIAN ANALYSIS OF SOMATIC MUTATION DATA IN CANCER
    Ding, Jie
    Trippa, Lorenzo
    Zhong, Xiaogang
    Parmigiani, Giovanni
    ANNALS OF APPLIED STATISTICS, 2013, 7 (02): : 883 - 903
  • [9] An empirical Bayesian framework for somatic mutation detection from cancer genome sequencing data
    Shiraishi, Yuichi
    Sato, Yusuke
    Chiba, Kenichi
    Okuno, Yusuke
    Nagata, Yasunobu
    Yoshida, Kenichi
    Shiba, Norio
    Hayashi, Yasuhide
    Kume, Haruki
    Homma, Yukio
    Sanada, Masashi
    Ogawa, Seishi
    Miyano, Satoru
    NUCLEIC ACIDS RESEARCH, 2013, 41 (07)
  • [10] CAPRI: efficient inference of cancer progression models from cross-sectional data
    Ramazzotti, Daniele
    Caravagna, Giulio
    Loohuis, Loes Olde
    Graudenzi, Alex
    Korsunsky, Ilya
    Mauri, Giancarlo
    Antoniotti, Marco
    Mishra, Bud
    BIOINFORMATICS, 2015, 31 (18) : 3016 - 3026