Group classification of systems of non-linear reaction-diffusion equations with general diffusion matrix. II. Generalized Turing systems

被引:24
|
作者
Nikitin, A. G. [1 ]
机构
[1] Natl Acad Sci Ukraine, Inst Math, UA-01601 Kiev, Ukraine
关键词
reaction-diffusion systems; quasilinear parabolic systems; turing systems; group classification; symmetries;
D O I
10.1016/j.jmaa.2006.10.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Group classification of systems of two coupled non-linear reaction-diffusion equation with a diagonal diffusion matrix is carried out. Symmetries of diffusion systems with singular diffusion matrix and additional first order derivative terms are described. (C) 2006 Elsevier Inc. All fights reserved.
引用
收藏
页码:666 / 690
页数:25
相关论文
共 50 条
  • [21] BIFURCATION ANALYSIS OF NON-LINEAR REACTION-DIFFUSION SYSTEMS - DISSIPATIVE STRUCTURES IN A SPHERE
    BILLING, GD
    HUNDING, A
    JOURNAL OF CHEMICAL PHYSICS, 1978, 69 (08): : 3603 - 3610
  • [22] conditions for Turing and wave instabilities in reaction-diffusion systems
    Villar-Sepulveda, Edgardo
    Champneys, Alan R. R.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2023, 86 (03)
  • [23] On the speed of propagation in Turing patterns for reaction-diffusion systems
    Klika, Vaclav
    Gaffney, Eamonn A.
    Maini, Philip K.
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 467
  • [24] ON TURING-HOPF INSTABILITIES IN REACTION-DIFFUSION SYSTEMS
    Ricard, Mariano Rodriguez
    BIOMAT 2007, 2008, : 293 - 313
  • [25] Amplitude equations for reaction-diffusion systems with cross diffusion
    Zemskov, Evgeny P.
    Vanag, Vladimir K.
    Epstein, Irving R.
    PHYSICAL REVIEW E, 2011, 84 (03):
  • [26] Analysis of reaction-diffusion systems by the method of linear determining equations
    Schmidt A.V.
    Computational Mathematics and Mathematical Physics, 2007, 47 (2) : 249 - 261
  • [27] SOLUTIONS TO NON-LINEAR REACTION-DIFFUSION EQUATIONS IN 2 SPACE DIMENSIONS
    STRAMPP, W
    STEEB, WH
    ERIG, W
    PROGRESS OF THEORETICAL PHYSICS, 1982, 68 (03): : 731 - 743
  • [28] Turing space in reaction-diffusion systems with density-dependent cross diffusion
    Zemskov, E. P.
    Kassner, K.
    Hauser, M. J. B.
    Horsthemke, W.
    PHYSICAL REVIEW E, 2013, 87 (03):
  • [29] Group classification of systems of diffusion equations
    Kontogiorgis, Stavros
    Sophocleous, Christodoulos
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (05) : 1746 - 1756
  • [30] Turing's Diffusive Threshold in Random Reaction-Diffusion Systems
    Haas, Pierre A.
    Goldstein, Raymond E.
    PHYSICAL REVIEW LETTERS, 2021, 126 (23)