The Dynamic Structure of Coronal Hole Boundaries

被引:4
|
作者
Aslanyan, V. [1 ]
Pontin, D. I. [2 ]
Scott, R. B. [3 ]
Higginson, A. K. [4 ]
Wyper, P. F. [5 ]
Antiochos, S. K. [6 ]
机构
[1] Univ Dundee, Sch Math, Dundee DD1 4HN, Scotland
[2] Univ Newcastle, Sch Informat & Phys Sci, Univ Dr, Callaghan, NSW 2308, Australia
[3] US Naval Res Lab, NRC Res Associate, Washington, DC 20375 USA
[4] NASA, Heliophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[5] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
[6] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA
来源
ASTROPHYSICAL JOURNAL | 2022年 / 931卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
PSEUDOSTREAMER; WIND;
D O I
10.3847/1538-4357/ac69ed
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The boundaries of solar coronal holes are difficult to uniquely define observationally but are sites of interest in part because the slow solar wind appears to originate there. The aim of this article is to explore the dynamics of interchange magnetic reconnection at different types of coronal hole boundaries-namely streamers and pseudostreamers-and their implications for the coronal structure. We describe synthetic observables derived from three-dimensional magnetohydrodynamic simulations of the atmosphere of the Sun in which coronal hole boundaries are disturbed by flows that mimic the solar supergranulation. Our analysis shows that interchange reconnection takes place much more readily at the pseudostreamer boundary of the coronal hole. As a result, the portion of the coronal hole boundary formed by the pseudostreamer remains much smoother, in contrast to the highly distorted helmet-streamer portion of the coronal hole boundary. Our results yield important new insights on coronal hole boundary regions, which are critical in coupling the corona to the heliosphere as the formation regions of the slow solar wind.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] A CDS Observation of the Relationship Between a Coronal Hole and Chromospheric Structure
    Jude E. Insley
    Space Science Reviews, 1999, 87 : 215 - 218
  • [42] The off-disk thermal structure of a polar coronal hole
    Landi, Enrico
    ASTROPHYSICAL JOURNAL, 2008, 685 (02): : 1270 - 1276
  • [43] A highly dynamic small-scale jet in a polar coronal hole
    Mandal, Sudip
    Chitta, Lakshmi Pradeep
    Peter, Hardi
    Solanki, Sami K.
    Cuadrado, Regina Aznar
    Teriaca, Luca
    Schuehle, Udo
    Berghmans, David
    Auchere, Frederic
    ASTRONOMY & ASTROPHYSICS, 2022, 664
  • [44] CORONAL HOLE DYNAMICS
    SUMMERS, D
    AUSTRALIAN JOURNAL OF PHYSICS, 1983, 36 (01): : 93 - 99
  • [45] Trans-Equatorial Loop System Arising from Coronal Hole Boundaries through Interactions between Active Regions and Coronal Holes
    Masaki Yokoyama
    Satoshi Masuda
    Solar Physics, 2010, 263 : 135 - 152
  • [46] Trans-Equatorial Loop System Arising from Coronal Hole Boundaries through Interactions between Active Regions and Coronal Holes
    Yokoyama, Masaki
    Masuda, Satoshi
    SOLAR PHYSICS, 2010, 263 (1-2) : 135 - 152
  • [47] STRUCTURE OF A POLAR CORONAL HOLE ABOVE 2 R0
    MUNRO, RH
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1974, 55 (04): : 406 - 406
  • [48] Coronal hole boundaries evolution at small scales I. EIT 195 Å and TRACE 171 Å view
    Madjarska, M. S.
    Wiegelmann, T.
    ASTRONOMY & ASTROPHYSICS, 2009, 503 (03): : 991 - 997
  • [49] Solar wind rotation rate and shear at coronal hole boundaries: Possible consequences for magnetic field inversions
    Pinto, R.F.
    Poirier, N.
    Rouillard, A.P.
    Kouloumvakos, A.
    Griton, L.
    Fargette, N.
    Kieokaew, R.
    Lavraud, B.
    Brun, A.S.
    Astronomy and Astrophysics, 2021, 653
  • [50] Alfvenic turbulence in solar wind originating near coronal hole boundaries: heavy-ion effects?
    Bavassano, B.
    Schwadron, N. A.
    Pietropaolo, E.
    Bruno, R.
    ANNALES GEOPHYSICAE, 2006, 24 (02) : 785 - 789