Singular Monge-Ampere foliations

被引:8
|
作者
Duchamp, T
Kalka, M
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
[2] Tulane Univ, Dept Math, New Orleans, LA 70118 USA
关键词
D O I
10.1007/s00208-002-0378-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper generalizes results of Lempert and Szoke on, the structure of the singular set of a solution of the homogeneous Monge-Ampere equation on a Stein manifold. Their a priori assumption that the singular set has maximum dimension is shown to be a consequence of regularity of the solution. In addition, their requirement that the square of the solution be C-3 everywhere is replaced by a smoothness condition on the blowup of the singular set. Under these conditions, the singular set is shown to inherit a Finsler metric, which in the real analytic case uniquely determines the solution of the Monge-Ampere equation. These results are proved using techniques from contact geometry.
引用
收藏
页码:187 / 209
页数:23
相关论文
共 50 条
  • [31] GEOMETRY OF MONGE-AMPERE EQUATIONS
    MORIMOTO, T
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 289 (01): : 25 - 28
  • [32] A property for the Monge-Ampere equation
    Puglisi, Daniele
    ISRAEL JOURNAL OF MATHEMATICS, 2020, 236 (02) : 959 - 965
  • [33] A nonlocal Monge-Ampere equation
    Caffarelli, Luis
    Silvestre, Luis
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2016, 24 (02) : 307 - 335
  • [34] An equality on Monge-Ampere measures
    El Kadiri, Mohamed
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 519 (02)
  • [35] STABILITY OF THE MONGE-AMPERE FOLIATION
    PATRIZIO, G
    WONG, PM
    MATHEMATISCHE ANNALEN, 1983, 263 (01) : 13 - 29
  • [36] A COMPLEX MONGE-AMPERE EQUATION
    LAVIL, G
    RAMADANOV, IP
    DOKLADY AKADEMII NAUK SSSR, 1984, 275 (03): : 546 - 548
  • [37] MONGE-AMPERE EQUATION IN MAGNETOHYDRODYNAMICS
    GUNDERSE.RM
    JOURNAL OF MATHEMATICS AND MECHANICS, 1967, 17 (06): : 491 - &
  • [38] On the Levi Monge-Ampere Equation
    Montanari, Annamaria
    FULLY NONLINEAR PDES IN REAL AND COMPLEX GEOMETRY AND OPTICS - CETRARO, ITALY 2012, 2014, 2087 : 151 - 208
  • [39] Hyperbolic Monge-Ampere systems
    Tunitskii, D. V.
    SBORNIK MATHEMATICS, 2006, 197 (7-8) : 1223 - 1258
  • [40] Classification of Monge-Ampere Equations
    Kushner, Alexei G.
    DIFFERENTIAL EQUATIONS: GEOMETRY, SYMMETRIES AND INTEGRABILITY - THE ABEL SYMPOSIUM 2008, 2009, 5 : 223 - 256