Multi-functional Ni3C cocatalyst/g-C3N4 nanoheterojunctions for robust photocatalytic H2 evolution under visible light

被引:261
|
作者
He, Kelin [1 ,2 ]
Xie, Jun [1 ,2 ]
Liu, Zhao-Qing [3 ]
Li, Neng [4 ]
Chen, Xiaobo [5 ]
Hu, Jun [6 ]
Li, Xin [1 ,2 ]
机构
[1] South China Agr Univ, Key Lab Energy Plants Resource & Utilizat, Coll Forestry & Landscape Architecture, Minist Agr, Guangzhou 510642, Guangdong, Peoples R China
[2] South China Agr Univ, Coll Mat & Energy, Guangzhou 510642, Guangdong, Peoples R China
[3] Guangzhou Univ, Sch Chem & Chem Engn,Minist Educ, Guangzhou Key Lab Environm Funct Mat & Technol, Key Lab Water Qual & Conservat Pearl River Delta, Guangzhou 510006, Guangdong, Peoples R China
[4] Wuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Hubei, Peoples R China
[5] Univ Missouri Kansas City, Dept Chem, Kansas City, MO 64110 USA
[6] Northwest Univ, Sch Chem Engn, Xian 710069, Shaanxi, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
MOLYBDENUM CARBIDE NANOPARTICLES; GRAPHITIC CARBON NITRIDE; HYDROGEN-EVOLUTION; METAL-FREE; G-C3N4; NANOSHEETS; TUNGSTEN CARBIDE; EFFICIENT ELECTROCATALYSTS; CDS NANOSHEETS; DOPED G-C3N4; GENERATION;
D O I
10.1039/c8ta03048k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing highly active, non-noble-metal H-2 evolution co-catalysts is appealing yet still remains a great challenge in the promising field of visible-light-driven photocatalytic solar fuel H-2 production. In this work, high quality hexagonal Ni3C nanoparticles were facilely fabricated through the low-temperature thermolysis of nickel acetylacetonate in oleylamine under a nitrogen atmosphere and were then coupled with g-C3N4 by a simple grinding method. The photocatalytic performances of g-C3N4/Ni3C nanoheterojunctions were tested under visible light irradiation using triethanolamine (TEOA) as a hole scavenger. The optimal H-2-production rate of 15.18 mol h(-1) over 15 wt% Ni3C nanoparticle decorated g-C3N4, corresponding to an apparent quantum yield (AQY) of 0.40% at 420 nm, is approximately 116.7 times higher than that of pure g-C3N4 and is even larger than that of the 0.5 wt% Pt/g-C3N4 sample. Well resolved density functional theory (DFT) calculation reveals that the TOP site of Ni3C(113) with a H adsorption energy of -0.97 eV is likely the dominant reaction site for H-2 evolution, rather than the Hollow and Bridge sites. It was also demonstrated by the polarization curves that the Ni3C nanoparticles could act as multi-functional electrocatalysts to improve the kinetics for water oxidation, the oxidation of TEOA, and hydrogen evolution in both acidic and basic media. Therefore, the loading of multi-functional Ni3C cocatalyst nanoparticles onto g-C3N4 can fundamentally promote the rapid transportation/separation of charge carriers, enhance the oxidation kinetics of TEOA, and decrease the overpotential of H-2-evolution, thus favoring significantly enhanced photocatalytic activity. It is highly expected that this work will provide new ideas to develop robust metal carbides as noble-metal-free cocatalysts for high-efficiency and low-cost g-C3N4-based photocatalytic water splitting.
引用
收藏
页码:13110 / 13122
页数:13
相关论文
共 50 条
  • [31] Insight into the role of Ni atoms at the interface of g-C3N4/CdS in photocatalytic H2 evolution
    Ma, Dandan
    Zhang, Xiaoyu
    Yang, Chao
    Feng, Xiangbo
    Zhang, Zhen-Feng
    Song, Kunli
    Wu, Shangyuan
    Li, Lu
    Jiang, Ting
    Shi, Jian-Wen
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 327
  • [32] Barium- and Phosphorus-Codoped g-C3N4 Microtubes with Efficient Photocatalytic H2 Evolution under Visible Light Irradiation
    Long, Dan
    Chen, Wenlan
    Zheng, Shaohui
    Rao, Xi
    Zhang, Yongping
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (10) : 4549 - 4556
  • [33] Enhanced photocatalytic H2 evolution over CdS/Au/g-C3N4 composite photocatalyst under visible-light irradiation
    Ding, Xiaoling
    Li, Yingxuan
    Zhao, Jie
    Zhu, Yunqing
    Li, Yan
    Deng, Wenye
    Wang, Chuanyi
    APL MATERIALS, 2015, 3 (10):
  • [34] Synthesizing crystalline g-C3N4 for enhanced photocatalytic hydrogen evolution under visible light
    Zhu, Linyu
    Zhang, Wenchi
    Shi, Guang
    Tian, Xu
    Tang, Peisong
    Xia, Pengfei
    CRYSTENGCOMM, 2024, 26 (05) : 599 - 603
  • [35] Coordination of π-Delocalization in g-C3N4 for Efficient Photocatalytic Hydrogen Evolution under Visible Light
    Xu, Chengqun
    Liu, Xiaolu
    Li, Dezhi
    Chen, Zeyuan
    Yang, Jiale
    Huang, Janjer
    Pan, Hui
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (17) : 20114 - 20124
  • [36] g-C3N4 Hydrogen-Bonding Viologen for Significantly Enhanced Visible-Light Photocatalytic H2 Evolution
    Liu, Ya-Nan
    Shen, Cong-Cong
    Jiang, Nan
    Zhao, Zhi-Wei
    Zhou, Xiao
    Zhao, Sheng-Jie
    Xu, An-Wu
    ACS CATALYSIS, 2017, 7 (12): : 8228 - 8234
  • [37] Enhanced visible light photocatalytic H2 evolution of metal-free g-C3N4/SiC heterostructured photocatalysts
    Wang, Biao
    Zhang, Jingtao
    Huang, Feng
    APPLIED SURFACE SCIENCE, 2017, 391 : 449 - 456
  • [38] Nanoporous g-C3N4 nanosheets: Facile synthesis and excellent visible-light photocatalytic H2 evolution performance
    Shu, Zhu
    Xie, Cong
    Zhou, Jun
    Li, Tiantian
    Chen, Ying
    Wang, Wenbin
    Tan, Yigen
    Zhao, Zhengliang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 747 : 140 - 148
  • [39] Novel g-C3N4/CoO Nanocomposites with Significantly Enhanced Visible-Light Photocatalytic Activity for H2 Evolution
    Mao, Zhiyong
    Chen, Jingjing
    Yang, Yanfang
    Wang, Dajian
    Bie, Lijian
    Fahlman, Bradley D.
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (14) : 12427 - 12435
  • [40] TiO2-g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation
    Yan, Hongjian
    Yang, Haoxin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (04) : L26 - L29