Self-Assembled Sn Nanocrystals as the Floating Gate of Nonvolatile Flash Memory

被引:10
|
作者
Rathore, Jaswant S. [1 ]
Fandan, Rajveer [2 ,3 ]
Srivastava, Shalini [2 ]
Khiangte, Krista R. [1 ]
Das, Sudipta [1 ,2 ]
Ganguly, Udayan [2 ]
Laha, Apurba [2 ]
Mahapatra, Suddhasatta [1 ]
机构
[1] Indian Inst Technol, Dept Phys, Mumbai 400076, Maharashtra, India
[2] Indian Inst Technol, Dept Elect Engn, Mumbai 400076, Maharashtra, India
[3] Univ Politecn Madrid, Escuela Tecn Super Ingenieros Telecomunicac, E-28040 Madrid, Spain
来源
ACS APPLIED ELECTRONIC MATERIALS | 2019年 / 1卷 / 09期
关键词
nonvolatile memory; tin nanocrystals; self-assembly; molecular beam epitaxy; CMOS-compatible; ATOMIC LAYER DEPOSITION; DEVICES; SILICON; 2-BIT; OXIDE;
D O I
10.1021/acsaelm.9b00379
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As demands for data storage capability continue to increase, nonvolatile memory devices with discrete nanocrystals as the charge-storage nodes are being extensively investigated. To alleviate scaling issues, use of metal-nanocrystal-based ultrahigh-bit-density memory devices, capable of multilevel cell operations, have been proposed and studied widely. Here we propose a nonvolatile floating gate memory, utilizing nanocrystals of the group-IV metal, beta-Tin (beta-Sn), which spontaneously self-assemble on a variety of high-k dielectric oxides and silicon during molecular beam epitaxy at low temperatures. In metal-oxide-semiconductor memory devices, we demonstrate a large memory window (similar to 3 V) at moderate operating voltages of +/- 6 V and investigate the retention and endurance characteristics. The observed results are promising for realization of memory devices, compatible with the silicon complementary-metal-oxide-semiconductor technology.
引用
收藏
页码:1852 / 1858
页数:13
相关论文
共 50 条
  • [41] Self-assembled germanium nanocrystals on SiC{0001}
    Schroeter, B
    Komlev, K
    Richter, W
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2002, 88 (2-3): : 259 - 263
  • [42] Photoluminescence Efficiency of Self-Assembled Ge Nanocrystals
    Rowell, N. L.
    Lockwood, D. J.
    Berbezier, I.
    Szkutnik, P. D.
    Ronda, A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (12) : H913 - H915
  • [43] Orientational order of self-assembled magnetic nanocrystals
    Kamali, Saeed
    Itou, Masayoshi
    Kodama, Akio
    Stroeve, Pieter
    Sakurai, Yoshiharu
    PHYSICAL REVIEW B, 2012, 85 (02):
  • [44] Singlet fission in self-assembled PDI nanocrystals
    Schierl, Christoph
    Niazov-Elkan, Angelica
    Shimon, Linda J. W.
    Feldman, Yishay
    Rybtchinski, Boris
    Guldi, Dirk M.
    NANOSCALE, 2018, 10 (43) : 20147 - 20154
  • [45] Superlattices of self-assembled tetrahedral Ag nanocrystals
    Wang, ZL
    Harfenist, SA
    Vezmar, I
    Whetten, RL
    Bentley, J
    Evans, ND
    Alexander, KB
    ADVANCED MATERIALS, 1998, 10 (10) : 808 - 812
  • [46] Multiphoton photoemission of self-assembled silver nanocrystals
    Maillard, M
    Monchicourt, P
    Pileni, MP
    CHEMICAL PHYSICS LETTERS, 2003, 380 (5-6) : 704 - 709
  • [47] SNOM characterization of self-assembled organic nanocrystals
    Lacharmoise, P. D.
    Osso, J. O.
    Goni, A. R.
    Alonso, M. I.
    Garriga, M.
    Barrena, E.
    de Oteyza, D. G.
    Dosch, H.
    PHYSICS OF SEMICONDUCTORS, PTS A AND B, 2007, 893 : 377 - +
  • [48] Memory properties of Al-based nanoparticle floating gate for nonvolatile memory applications
    Jong-Hwan Yoon
    Journal of the Korean Physical Society, 2012, 61 : 799 - 802
  • [49] Memory properties of Al-based nanoparticle floating gate for nonvolatile memory applications
    Yoon, Jong-Hwan
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2012, 61 (05) : 799 - 802
  • [50] Hierarchical Constrained Coding for Floating-Gate to Floating-Gate Coupling Mitigation in Flash Memory
    Motwani, Ravi
    2011 IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE (GLOBECOM 2011), 2011,