Stability of the Ricci flow at Ricci-flat metrics

被引:59
|
作者
Guenther, C [1 ]
Isenberg, J
Knopf, D
机构
[1] Univ Pacific, Stockton, CA 95211 USA
[2] Univ Oregon, Eugene, OR 97403 USA
[3] Univ Wisconsin, Madison, WI 53706 USA
关键词
D O I
10.4310/CAG.2002.v10.n4.a4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If g is a metric whose Ricci flow g (t) converges, one may ask if the same is true for metrics (g) over tilde that are small perturbations of g. We use maximal regularity theory and center manifold analysis to study flat and Ricci-flat metrics. We show that if g is flat, there is a unique exponentially-attractive center manifold at g consisting entirely of equilibria for the flow. Adding a continuity argument, we prove stability for any metric whose Ricci flow converges to a flat metric. We obtain a slightly weaker stability result for a Kahler-Einstein metric on a K3 manifold.
引用
收藏
页码:741 / 777
页数:37
相关论文
共 50 条
  • [21] ON A CLASS OF PROJECTIVELY RICCI-FLAT DOUGLAS METRICS
    Zhu, Hongmei
    HOUSTON JOURNAL OF MATHEMATICS, 2022, 48 (01): : 91 - 109
  • [22] On a class of projectively Ricci-flat Finsler metrics
    Zhu, Hongmei
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2020, 73
  • [23] Ricci-flat deformations of metrics with exceptional holonomy
    Nordstroem, Johannes
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2013, 45 : 1004 - 1018
  • [24] ADIABATIC LIMITS OF RICCI-FLAT KAHLER METRICS
    Tosatti, Valentino
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2010, 84 (02) : 427 - 453
  • [25] Diagram involutions and homogeneous Ricci-flat metrics
    Conti, Diego
    del Barco, Viviana
    Rossi, Federico A.
    MANUSCRIPTA MATHEMATICA, 2021, 165 (3-4) : 381 - 413
  • [26] Diagram involutions and homogeneous Ricci-flat metrics
    Diego Conti
    Viviana del Barco
    Federico A. Rossi
    manuscripta mathematica, 2021, 165 : 381 - 413
  • [27] Two conjectures on Ricci-flat Kahler metrics
    Loi, Andrea
    Salis, Filippo
    Zuddas, Fabio
    MATHEMATISCHE ZEITSCHRIFT, 2018, 290 (1-2) : 599 - 613
  • [28] RICCI-FLAT FINSLER METRICS BY WARPED PRODUCT
    Marcal, P. A. T. R. I. C. I. A.
    Shen, Z. H. O. N. G. M. I. N.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 2169 - 2183
  • [29] Ricci-flat Kahler metrics on canonical bundles
    Bielawski, R
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2002, 132 : 471 - 479
  • [30] The Stability Inequality for Ricci-Flat Cones
    Stuart Hall
    Robert Haslhofer
    Michael Siepmann
    Journal of Geometric Analysis, 2014, 24 : 472 - 494