Stability of the Ricci flow at Ricci-flat metrics

被引:59
|
作者
Guenther, C [1 ]
Isenberg, J
Knopf, D
机构
[1] Univ Pacific, Stockton, CA 95211 USA
[2] Univ Oregon, Eugene, OR 97403 USA
[3] Univ Wisconsin, Madison, WI 53706 USA
关键词
D O I
10.4310/CAG.2002.v10.n4.a4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If g is a metric whose Ricci flow g (t) converges, one may ask if the same is true for metrics (g) over tilde that are small perturbations of g. We use maximal regularity theory and center manifold analysis to study flat and Ricci-flat metrics. We show that if g is flat, there is a unique exponentially-attractive center manifold at g consisting entirely of equilibria for the flow. Adding a continuity argument, we prove stability for any metric whose Ricci flow converges to a flat metric. We obtain a slightly weaker stability result for a Kahler-Einstein metric on a K3 manifold.
引用
收藏
页码:741 / 777
页数:37
相关论文
共 50 条
  • [1] Dynamical (In)Stability of Ricci-flat ALE metrics along the Ricci flow
    Deruelle, Alix
    Ozuch, Tristan
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (03)
  • [2] Dynamical (In)Stability of Ricci-flat ALE metrics along the Ricci flow
    Alix Deruelle
    Tristan Ozuch
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [3] Dynamical stability and instability of Ricci-flat metrics
    Haslhofer, Robert
    Mueller, Reto
    MATHEMATISCHE ANNALEN, 2014, 360 (1-2) : 547 - 553
  • [4] Linear and dynamical stability of Ricci-flat metrics
    Sesum, Natasa
    DUKE MATHEMATICAL JOURNAL, 2006, 133 (01) : 1 - 26
  • [5] Dynamical stability and instability of Ricci-flat metrics
    Robert Haslhofer
    Reto Müller
    Mathematische Annalen, 2014, 360 : 547 - 553
  • [6] THE KAHLER-RICCI FLOW, RICCI-FLAT METRICS AND COLLAPSING LIMITS
    Tosatti, Valentino
    Weinkove, Ben
    Yang, Xiaokui
    AMERICAN JOURNAL OF MATHEMATICS, 2018, 140 (03) : 653 - 698
  • [7] Stability of ALE Ricci-Flat Manifolds Under Ricci Flow
    Alix Deruelle
    Klaus Kröncke
    The Journal of Geometric Analysis, 2021, 31 : 2829 - 2870
  • [8] Some Ricci-flat (α, β)-metrics
    Sevim, Esra Sengelen
    Ulgen, Semail
    PERIODICA MATHEMATICA HUNGARICA, 2016, 72 (02) : 151 - 157
  • [9] Stability of ALE Ricci-Flat Manifolds Under Ricci Flow
    Deruelle, Alix
    Kroencke, Klaus
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (03) : 2829 - 2870
  • [10] Ricci-flat Douglas (α, β)-metrics
    Tian, Yanfang
    Cheng, Xinyue
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2012, 30 (01) : 20 - 32