Lie bialgebra structures on derivation Lie algebra over quantum tori

被引:3
|
作者
Tang, Xiaomin [1 ]
Liu, Lijuan [2 ]
Xu, Jinli [3 ]
机构
[1] Heilongjiang Univ, Dept Math, Harbin 150080, Peoples R China
[2] Harbin Inst Technol Press, Harbin 150001, Peoples R China
[3] Northeast Forestry Univ, Dept Math, Harbin 150040, Peoples R China
基金
黑龙江省自然科学基金; 中国国家自然科学基金;
关键词
Lie bialgebra; Yang-Baxter equation; derivation Lie algebra over quantum tori; CENTRAL EXTENSIONS; VIRASORO ALGEBRAS; REPRESENTATIONS; WITT; CLASSIFICATION;
D O I
10.1007/s11464-017-0630-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate Lie bialgebra structures on the derivation Lie algebra over the quantum torus. It is proved that, for the derivation Lie algebra W over a rank 2 quantum torus, all Lie bialgebra structures on W are the coboundary triangular Lie bialgebras. As a by-product, it is also proved that the first cohomology group H (1)(W, W aSu W) is trivial.
引用
收藏
页码:949 / 965
页数:17
相关论文
共 50 条