共 50 条
Lie bialgebra structures on derivation Lie algebra over quantum tori
被引:3
|作者:
Tang, Xiaomin
[1
]
Liu, Lijuan
[2
]
Xu, Jinli
[3
]
机构:
[1] Heilongjiang Univ, Dept Math, Harbin 150080, Peoples R China
[2] Harbin Inst Technol Press, Harbin 150001, Peoples R China
[3] Northeast Forestry Univ, Dept Math, Harbin 150040, Peoples R China
基金:
黑龙江省自然科学基金;
中国国家自然科学基金;
关键词:
Lie bialgebra;
Yang-Baxter equation;
derivation Lie algebra over quantum tori;
CENTRAL EXTENSIONS;
VIRASORO ALGEBRAS;
REPRESENTATIONS;
WITT;
CLASSIFICATION;
D O I:
10.1007/s11464-017-0630-7
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We investigate Lie bialgebra structures on the derivation Lie algebra over the quantum torus. It is proved that, for the derivation Lie algebra W over a rank 2 quantum torus, all Lie bialgebra structures on W are the coboundary triangular Lie bialgebras. As a by-product, it is also proved that the first cohomology group H (1)(W, W aSu W) is trivial.
引用
收藏
页码:949 / 965
页数:17
相关论文