Discovering transcriptional modules by Bayesian data integration

被引:50
|
作者
Savage, Richard S. [1 ]
Ghahramani, Zoubin [2 ]
Griffin, Jim E. [3 ]
de la Cruz, Bernard J.
Wild, David L. [1 ]
机构
[1] Univ Warwick, Syst Biol Ctr, Coventry CV4 7AL, W Midlands, England
[2] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
[3] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury, Kent, England
基金
英国工程与自然科学研究理事会;
关键词
GENE-EXPRESSION DATA; MIXTURE MODEL; NONPARAMETRIC PROBLEMS; REGULATORY NETWORKS; DIRICHLET PROCESSES; CLUSTER-ANALYSIS; MICROARRAY DATA; CELL-CYCLE; GENOME; YEAST;
D O I
10.1093/bioinformatics/btq210
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: We present a method for directly inferring transcriptional modules (TMs) by integrating gene expression and transcription factor binding (ChIP-chip) data. Our model extends a hierarchical Dirichlet process mixture model to allow data fusion on a geneby- gene basis. This encodes the intuition that co-expression and co-regulation are not necessarily equivalent and hence we do not expect all genes to group similarly in both datasets. In particular, it allows us to identify the subset of genes that share the same structure of transcriptional modules in both datasets. Results: We find that by working on a gene-by-gene basis, our model is able to extract clusters with greater functional coherence than existing methods. By combining gene expression and transcription factor binding (ChIP-chip) data in this way, we are better able to determine the groups of genes that are most likely to represent underlying TMs.
引用
收藏
页码:i158 / i167
页数:10
相关论文
共 50 条
  • [31] Progress in Discovering Transcriptional Noise in Aging
    Bartz, Josh
    Jung, Hannim
    Wasiluk, Karen
    Zhang, Lei
    Dong, Xiao
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (04)
  • [32] A Bayesian inference method for the analysis of transcriptional regulatory networks in metagenomic data
    Hobbs, Elizabeth T.
    Pereira, Talmo
    O'Neill, Patrick K.
    Erill, Ivan
    ALGORITHMS FOR MOLECULAR BIOLOGY, 2016, 11
  • [33] A Bayesian inference method for the analysis of transcriptional regulatory networks in metagenomic data
    Elizabeth T. Hobbs
    Talmo Pereira
    Patrick K. O’Neill
    Ivan Erill
    Algorithms for Molecular Biology, 11
  • [34] Transcriptional and metabolic data integration and modeling for identification of active pathways
    Jauhiainen, Alexandra
    Nerman, Olle
    Michailidis, George
    Jornsten, Rebecka
    BIOSTATISTICS, 2012, 13 (04) : 748 - 761
  • [35] Empirical Bayesian data mining for discovering safety signals in military electronic health records
    Coster, Trinka S.
    Fram, David
    DuMouchel, William
    Szarfman, Ana
    Dobardzic, Azra
    Xie, Suji
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2008, 17 : S174 - S174
  • [36] Bayesian network for discovering the interests of authors
    Hlel, Emna
    Jamoussi, Salma
    Ben Hamadou, Abdelmajid
    2016 IEEE/ACS 13TH INTERNATIONAL CONFERENCE OF COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2016,
  • [37] Inferring transcriptional modules from ChIP-chip, motif and microarray data
    Karen Lemmens
    Thomas Dhollander
    Tijl De Bie
    Pieter Monsieurs
    Kristof Engelen
    Bart Smets
    Joris Winderickx
    Bart De Moor
    Kathleen Marchal
    Genome Biology, 7
  • [38] Inferring transcriptional modules from ChIP-chip, motif and microarray data
    Lemmens, Karen
    Dhollander, Thomas
    De Bie, Tijl
    Monsieurs, Pieter
    Engelen, Kristof
    Smets, Bart
    Winderickx, Joris
    De Moor, Bart
    Marchal, Kathleen
    GENOME BIOLOGY, 2006, 7 (05)
  • [39] Discovering dynamics using Bayesian clustering
    Sebastiani, P
    Ramoni, M
    Cohen, P
    Warwick, J
    Davis, J
    ADVANCES IN INTELLIGENT DATA ANALYSIS, PROCEEDINGS, 1999, 1642 : 199 - 209
  • [40] Discovering stable racial integration
    Smith, RA
    JOURNAL OF URBAN AFFAIRS, 1998, 20 (01) : 1 - 25