An infeasible nonmonotone SSLE algorithm for nonlinear programming

被引:8
|
作者
Shen, Chungen [1 ,2 ]
Xue, Wenjuan [3 ]
Pu, Dingguo [1 ]
机构
[1] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
[2] Shanghai Finance Univ, Dept Appl Math, Shanghai 201209, Peoples R China
[3] Shanghai Univ Elect Power, Dept Math & Phys, Shanghai 200090, Peoples R China
基金
美国国家科学基金会;
关键词
Nonmonotonicity; SSLE; Line search; Nonlinear programming; INEQUALITY CONSTRAINED OPTIMIZATION; SUPERLINEARLY CONVERGENT ALGORITHM; QP-FREE ALGORITHM; GLOBALLY CONVERGENT; SEQUENTIAL SYSTEMS; LINEAR-EQUATIONS; PENALTY-FUNCTION; POINT;
D O I
10.1007/s00186-009-0287-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we propose a new nonmonotone algorithm using the sequential systems of linear equations, which is an infeasible QP-free method. We use neither a penalty function nor a filter. Therefore, it is unnecessary to choose a problematic penalty parameter. The new algorithm only needs to solve three systems of linear equations with the same nonsingular coefficient matrix. Under some suitable conditions, the global convergence is established. Some numerical results are also presented.
引用
收藏
页码:103 / 124
页数:22
相关论文
共 50 条
  • [31] A modified nonmonotone BFGS algorithm for solving smooth nonlinear equations
    Zhong Wan
    Yu Chen
    Shuai Huang
    Dongdong Feng
    Optimization Letters, 2014, 8 : 1845 - 1860
  • [32] A modified nonmonotone BFGS algorithm for solving smooth nonlinear equations
    Wan, Zhong
    Chen, Yu
    Huang, Shuai
    Feng, Dongdong
    OPTIMIZATION LETTERS, 2014, 8 (06) : 1845 - 1860
  • [33] A PRIMAL DUAL INFEASIBLE-INTERIOR-POINT ALGORITHM FOR LINEAR-PROGRAMMING
    KOJIMA, M
    MEGIDDO, N
    MIZUNO, S
    MATHEMATICAL PROGRAMMING, 1993, 61 (03) : 263 - 280
  • [34] A RANDOMIZED NONMONOTONE BLOCK PROXIMAL GRADIENT METHOD FOR A CLASS OF STRUCTURED NONLINEAR PROGRAMMING
    Lu, Zhaosong
    Xiao, Lin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (06) : 2930 - 2955
  • [35] An infeasible-interior-point potential-reduction algorithm for linear programming
    Tütüncü, RH
    MATHEMATICAL PROGRAMMING, 1999, 86 (02) : 313 - 334
  • [36] Infeasible interior-point algorithm based optimization method for geometric programming
    Liu, Qiang
    Xu, Xiaoming
    Zhang, Weidong
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 1999, 33 (11): : 1355 - 1358
  • [37] An infeasible-interior-point potential-reduction algorithm for linear programming
    Reha H. Tütüncü
    Mathematical Programming, 1999, 86 : 313 - 334
  • [38] A primal-infeasible interior point algorithm for linearly constrained convex programming
    Wang, Yanjin
    Fei, Pusheng
    CONTROL AND CYBERNETICS, 2009, 38 (03): : 687 - 704
  • [39] Primal-dual infeasible-interior-point algorithm for linear programming
    Kojima, Masakazu
    Megiddo, Nimrod
    Mizuno, Shinji
    Mathematical Programming, Series A, 1993, 61 (03): : 263 - 280
  • [40] Nonmonotone line search technique for QP-free infeasible method
    Pu D.
    Jin Z.
    Tongji Daxue Xuebao/Journal of Tongji University, 2010, 38 (02): : 311 - 316