Tight-binding theory for coupled photonic crystal waveguides

被引:26
|
作者
Chien, F. S. -S
Tu, J. B.
Hsieh, W. -F. [1 ]
Cheng, S. -C.
机构
[1] Natl Chiao Tung Univ, Dept Photon, Hsinchu 300, Taiwan
[2] Natl Chiao Tung Univ, Inst Electroopt Engn, Hsinchu 300, Taiwan
[3] Tunghai Univ, Dept Phys, Taichung 407, Taiwan
[4] Chinese Culture Univ, Dept Phys, Taipei 111, Taiwan
来源
PHYSICAL REVIEW B | 2007年 / 75卷 / 12期
关键词
D O I
10.1103/PhysRevB.75.125113
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The point-defect coupling under the tight-binding approximation is introduced to describe the behavior of dispersion relations of the guided modes in a single photonic crystal waveguide (PCW) and two coupled identical PCWs. The cross-coupling coefficient beta of a point defect in one PCW to the nearest-neighboring (NN) defect in the other PCW causes the split of the dispersion curves, whereas the cross-coupling coefficient gamma to the next-NN defects causes a sinusoidal modulation to the dispersion curves. Furthermore, the sign of beta determines the parities of the fundamental guided modes, which can be either even or odd, and the inequality parallel to beta parallel to <parallel to 2 gamma parallel to is the criterion for the crossing of split dispersion curves. The model developed in this work allows for deriving the coupled-mode equations and the coupling length.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Tight-binding photonic molecule modes of resonant bispheres
    Mukaiyama, T
    Takeda, K
    Miyazaki, H
    Jimba, Y
    Kuwata-Gonokami, M
    PHYSICAL REVIEW LETTERS, 1999, 82 (23) : 4623 - 4626
  • [22] CRYSTAL FIELD EFFECTS IN TIGHT-BINDING APPROXIMATION
    MATTHEIS.LF
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1970, 15 (03): : 344 - &
  • [23] TIGHT-BINDING THEORY AND ELASTIC-CONSTANTS
    VANSCHILFGAARDE, M
    SHER, A
    PHYSICAL REVIEW B, 1987, 36 (08): : 4375 - 4382
  • [24] Tight-binding theory of graphene mechanical properties
    Huang, Kun
    Yin, Yajun
    Qu, Benning
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2021, 27 (10): : 3851 - 3858
  • [25] Tight-binding theory of manganese and iron oxides
    Harrison, Walter A.
    PHYSICAL REVIEW B, 2008, 77 (24):
  • [26] ON THE TIGHT-BINDING THEORY OF C-60
    GUO, D
    MAZUMDAR, S
    SYNTHETIC METALS, 1992, 49 (1-3) : 175 - 179
  • [27] Tight-binding theory of graphene mechanical properties
    Kun Huang
    Yajun Yin
    Benning Qu
    Microsystem Technologies, 2021, 27 : 3851 - 3858
  • [28] Tight-binding theory of tunneling giant magnetoresistance
    Mathon, J
    PHYSICAL REVIEW B, 1997, 56 (18): : 11810 - 11819
  • [29] Tight-binding theory of Faraday rotation in graphite
    Pedersen, TG
    PHYSICAL REVIEW B, 2003, 68 (24):
  • [30] Tight-binding model in the theory of disordered crystals
    Repetsky, S.
    Vyshyvana, I
    Kruchinin, S.
    Bellucci, S.
    MODERN PHYSICS LETTERS B, 2020, 34 (19-20):