Decay characterization of solutions to generalized Hall-MHD system in R3

被引:9
|
作者
Zhao, Xiaopeng [1 ]
Zhu, Mingxuan [2 ]
机构
[1] Jiangnan Univ, Sch Sci, Wuxi 214122, Peoples R China
[2] Jiaxing Univ, Dept Math, Jiaxing 314001, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金; 浙江省自然科学基金;
关键词
NAVIER-STOKES EQUATIONS; BLOW-UP CRITERIA; GLOBAL EXISTENCE; WELL-POSEDNESS; MAGNETO-HYDRODYNAMICS; MAGNETOHYDRODYNAMICS; REGULARITY; BEHAVIOR;
D O I
10.1063/1.5040409
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using the Fourier splitting method and the properties of decay character r*, we establish the time decay rate in the L-2-norm for the weak solutions and the higher-order derivative of solutions for the generalized Hall-magnetohydrodynamic equations in R 3. In particular, when (u(0), b(0)) is an element of H-s(R-3) boolean AND L-1(R-3) has decay character r* (u(0)) = r* (b(0)) = 0 and alpha = beta = 1, then we recover the previous results of Chae and Schonbek [J. Differ. Equations 255, 3971-3982 (2013)]. Published by AIP Publishing.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] GLOBAL EXISTENCE AND OPTIMAL DECAY RATES OF SOLUTIONS FOR COMPRESSIBLE HALL-MHD EQUATIONS
    Gao, Jincheng
    Yao, Zheng-An
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (06) : 3077 - 3106
  • [32] ON THE GLOBAL EXISTENCE TO HALL-MHD SYSTEM
    Liu, Lvqiao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (12): : 7301 - 7314
  • [33] Steady states of Hall-MHD system
    Zeng, Yong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 451 (02) : 757 - 793
  • [34] EXISTENCE AND STABILITY OF GLOBAL LARGE STRONG SOLUTIONS FOR THE HALL-MHD SYSTEM
    Benvenutti, Maicon J.
    Ferreira, Lucas C. F.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2016, 29 (9-10) : 977 - 1000
  • [35] Low Regularity Well-Posedness for the 3D Generalized Hall-MHD System
    Wan, Renhui
    Zhou, Yong
    ACTA APPLICANDAE MATHEMATICAE, 2017, 147 (01) : 95 - 111
  • [36] Low Regularity Well-Posedness for the 3D Generalized Hall-MHD System
    Renhui Wan
    Yong Zhou
    Acta Applicandae Mathematicae, 2017, 147 : 95 - 111
  • [37] The Global Strong Solutions of the 3D Incompressible Hall-MHD System with Variable Density
    An, Shu
    Chen, Jing
    Han, Bin
    MATHEMATICAL MODELLING AND ANALYSIS, 2024, 29 (02) : 288 - 308
  • [38] A new blowup criterion for a generalized Hall-MHD system concerning the deformation tensor
    Chen, Yunkun
    Peng, Yi
    Shi, Xiaoding
    APPLIED MATHEMATICS LETTERS, 2023, 140
  • [39] On global existence, energy decay and blow-up criteria for the Hall-MHD system
    Wan, Renhui
    Zhou, Yong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (11) : 5982 - 6008
  • [40] Regularity criteria for the incompressible Hall-MHD system
    Fan, Jishan
    Fukumoto, Yasuhide
    Nakamura, Gen
    Zhou, Yong
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2015, 95 (11): : 1156 - 1160