Vehicle Type Recognition Based on Increasing Hierarchical Feature Convolutional Neural Networks

被引:0
|
作者
Jiang, Xingguo [1 ]
Su, Xinxin [1 ]
Cai, Xiaodong [1 ]
Li, Haiou [1 ]
Luo, Zhenzhen [2 ]
机构
[1] Guilin Univ Elect Technol, Guangxi Key Lab Precis Nav Technol & Applicat, Guilin, Peoples R China
[2] Guilin Univ Elect Technol, Inst Informat Technol, Guilin, Peoples R China
关键词
Local response normalization; visual hierarchical feature; IHFCNN;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To improve the accuracy and reduce convergence rate for vehicle type recognition, this paper proposes a novel method based on IHFCNN (Increasing Hierarchical Feature Convolutional Neural Networks). Firstly, utilizing the characteristics of biological vision, a new network layer based on classical convolutional neural network is presented to simulate the hierarchical processing of information. Secondly, features are extracted from different layers, and then a fully-connected layer is connected. Finally, center loss is introduced to output layer, and Softmax classifier is applied for vehicle type recognition. The experimental results show that, compared with the classic networks as AlexNet, GoogLeNet and VGG16, the proposed method reduces the number of convergent iterations significantly and improves the recognition accuracy up to 97.78% in the database with 321678 training images and 8490 for testing in real application scenarios.
引用
收藏
页码:97 / 101
页数:5
相关论文
共 50 条
  • [41] Vehicle Type Classification based on Convolutional Neural Network
    Chen, Yanjun
    Zhu, Wenxing
    Yao, Donghui
    Zhang, Lidong
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 1898 - 1901
  • [42] Recognition of a Plant Leaf Based on Convolutional Neural Networks
    Guo, Yingjiu
    Wang, Dayu
    Zhu, Hongwei
    Li, Ailan
    TENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2018), 2018, 10806
  • [43] Face Recognition Based on Lightweight Convolutional Neural Networks
    Liu, Wenting
    Zhou, Li
    Chen, Jie
    INFORMATION, 2021, 12 (05)
  • [44] Convolutional Neural Networks in Hand Based Recognition System
    Prihodova, Katerina
    VISION 2025: EDUCATION EXCELLENCE AND MANAGEMENT OF INNOVATIONS THROUGH SUSTAINABLE ECONOMIC COMPETITIVE ADVANTAGE, 2019, : 4744 - 4750
  • [45] EEG Based Emotion Recognition with Convolutional Neural Networks
    Ozcan, Caner
    Cizmeci, Hnseyin
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [46] Gesture recognition system based on Convolutional neural networks
    Chistyakov, I. S.
    Chepin, E. V.
    2ND INTERNATIONAL TELECOMMUNICATION CONFERENCE ADVANCED MICRO- AND NANOELECTRONIC SYSTEMS AND TECHNOLOGIES, 2019, 498
  • [47] Acoustic Scene Recognition Based on Convolutional Neural Networks
    Sun, Fengjiao
    Wang, Mingjiang
    Xu, Qihang
    Xuan, Xiaogung
    Zhang, Xin
    2019 IEEE 4TH INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP 2019), 2019, : 122 - 126
  • [48] Image Recognition with MapReduce Based Convolutional Neural Networks
    Leung, Jackie
    Chen, Min
    2019 IEEE 10TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2019, : 119 - 125
  • [49] Convolutional neural networks recognition algorithm based on PCA
    Shi H.
    Xu Y.
    Ma S.
    Li Y.
    Li S.
    Xi'an Dianzi Keji Daxue Xuebao, 3 (161-166): : 161 - 166
  • [50] Human Pulse Recognition based on Convolutional Neural Networks
    Zhang, Shi-Ru
    Sun, Qing-Fu
    2016 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C), 2016, : 366 - 369