Filling COFs with bimetallic nanoclusters for CO2-to-alcohols conversion with H2O oxidation

被引:72
|
作者
Huang, Yamei [1 ]
Du, Peiyao [1 ]
Shi, Wen-Xiong [2 ]
Wang, Ye [2 ]
Yao, Shuang [2 ]
Zhang, Zhi-Ming [2 ]
Lu, Tong-Bu [2 ]
Lu, Xiaoquan [1 ]
机构
[1] Tianjin Univ, Sch Sci, Dept Chem, Tianjin Key Lab Mol Optoelect Sci, Tianjin 300072, Peoples R China
[2] Tianjin Univ Technol, Sch Mat Sci & Engn, Sch Chem & Chem Engn, Inst New Energy Mat & Low Carbon Technol, Tianjin 300384, Peoples R China
基金
中国国家自然科学基金;
关键词
Covalent organic frameworks; Bimetallic nanoclusters; CO2; photoreduction; H2O oxidation; COVALENT ORGANIC FRAMEWORKS; SINGLE NI SITES; CO2; REDUCTION; PHOTOCATALYTIC REDUCTION; SELECTIVE PHOTOREDUCTION; METAL NANOPARTICLES; PLATFORM; HYDROGENATION; ETHANOL; COPPER;
D O I
10.1016/j.apcatb.2021.120001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solar-driven CO2 reduction with H2O oxidation into liquid fuels is highly desirable for sustainable carbon cycle to achieve carbon neutral, but represents a great challenge for artificial photosynthesis. Herein, bimetallic PdIn nanoclusters are confined in a photosensitizing covalent organic framework (N-3-COF) to facilely construct PdxIny@N-3-COF composites (x:y = 1:0, 0:1, 1:2, 1:1, 2:1). The resulting PdIn@N-3-COF exhibits excellent activity for CO2 photoreduction with H2O oxidation as the H+ and e(-) source, showing a record-high total yield of 798 mu mol g(-1) for producing CH3OH (74 %) and CH3CH2OH (26 %) among the framework materials. The synergy in both the bimetallic nanocluster and cluster@N-3-COF contributes greatly to C-C coupling and interfacial charge transfer, thus achieving excellent activity for conversion of CO2 to C-1/C-2 alcohols on the non-copper catalysts. This work highlights the amazing potential for constructing bimetallic nanocluster@photosensitizing supports to produce alcohols in artificial photosynthesis with H2O oxidation.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] OXIDATION OF IRON BY O2, H2O, AND AN O2-H2O MIXTURE
    TURNER, NH
    COLTON, RJ
    MURDAY, JS
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY, 1981, 18 (02): : 593 - 594
  • [42] Preferential CO oxidation in the presence of H2, H2O and CO2 at short contact-times
    Jhalani, A
    Schmidt, LD
    CATALYSIS LETTERS, 2005, 104 (3-4) : 103 - 110
  • [43] Preferential CO Oxidation in the Presence of H2, H2O and CO2 at Short Contact-times
    A. Jhalani
    L.D. Schmidt
    Catalysis Letters, 2005, 104 : 103 - 110
  • [44] ADSORPTION OF CO, CO2, H-2, AND H2O ON TITANIA SURFACES WITH DIFFERENT OXIDATION-STATES
    RAUPP, GB
    DUMESIC, JA
    JOURNAL OF PHYSICAL CHEMISTRY, 1985, 89 (24): : 5240 - 5246
  • [45] Study on the effect of H2O on the formation of CO in the counterflow diffusion flame of H2/CO syngas in O2/H2O
    Wang, Pengxiang
    Guo, Tingting
    Xu, Huanhuan
    Zhao, Yijun
    Meng, Shun
    Feng, Dongdong
    Sun, Shaozeng
    FUEL, 2018, 234 : 516 - 525
  • [46] Co(C2(COO)2)(H2O)4 • 2 H2O and Co(C2(COO)2)(H2O)2:: Two co-ordination polymers of the acetylenedicarboxylate dianion
    Pantenburg, I
    Ruschewitz, U
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2002, 628 (07): : 1697 - 1702
  • [47] The wetting of H2O by CO2
    Brookes, Samuel G. H.
    Kapil, Venkat
    Schran, Christoph
    Michaelides, Angelos
    JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (08):
  • [48] Water oxidation by [(tpy)(H2O)2RuIIIORuIII(H2O)2(tpy)]4+
    Lebeau, EL
    Adeyemi, SA
    Meyer, TJ
    INORGANIC CHEMISTRY, 1998, 37 (25) : 6476 - 6484
  • [49] Role of CO2 and H2O on NO Formation during Biomass Char Oxidation
    Karlstrom, Oskar
    Schmid, Daniel
    Hupa, Mikko
    Brink, Anders
    ENERGY & FUELS, 2021, 35 (09) : 7058 - 7064
  • [50] Kinetic study on hydrogen oxidation in supercritical H2O/CO2 mixtures
    Li, Guoxing
    Wang, Hexuan
    Lu, Youjun
    FUEL PROCESSING TECHNOLOGY, 2019, 193 : 123 - 130