Incremental Adaptive Time Series Prediction for Power Demand Forecasting

被引:3
|
作者
Vrablecova, Petra [1 ]
Rozinajova, Viera [1 ]
Ezzeddine, Anna Bou [1 ]
机构
[1] Slovak Univ Technol Bratislava, Fac Informat & Informat Technol, Ilkovicova 2, Bratislava 84216, Slovakia
来源
关键词
Power demand forecasting; Stream mining; Concept drift;
D O I
10.1007/978-3-319-61845-6_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate power demand forecasts can help power distributors to lower differences between contracted and demanded electricity and minimize the imbalance in grid and related costs. Our forecasting method is designed to process continuous stream of data from smart meters incrementally and to adapt the prediction model to concept drifts in power demand. It identifies drifts using a condition based on an acceptable distributor's daily imbalance. Using only the most recent data to adapt the model (in contrast to all historical data) and adapting the model only when the need for it is detected (in contrast to creating a whole new model every day) enables the method to handle stream data. The proposed model shows promising results.
引用
收藏
页码:83 / 92
页数:10
相关论文
共 50 条
  • [31] Municipal Water Demand Forecasting: Tools for Intervention Time Series
    Herrera, M.
    Garcia-Diaz, J. C.
    Izquierdo, J.
    Perez-Garcia, R.
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2011, 29 (06) : 998 - 1007
  • [32] Deep learning models for forecasting aviation demand time series
    Kanavos, Andreas
    Kounelis, Fotios
    Iliadis, Lazaros
    Makris, Christos
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (23): : 16329 - 16343
  • [33] Forecasting Energy Demand by Clustering Smart Metering Time Series
    Bock, Christian
    INFORMATION PROCESSING AND MANAGEMENT OF UNCERTAINTY IN KNOWLEDGE-BASED SYSTEMS: THEORY AND FOUNDATIONS, IPMU 2018, PT I, 2018, 853 : 431 - 442
  • [34] Analysis of time series models for Brazilian electricity demand forecasting
    Velasquez, Carlos E.
    Zocatelli, Matheus
    Estanislau, Fidellis B. G. L.
    Castro, Victor F.
    ENERGY, 2022, 247
  • [35] Nearest neighbors with incremental learning for real-time forecasting of electricity demand
    Melgar-Garcia, Laura
    Gutierrez-Aviles, David
    Rubio-Escudero, Cristina
    Troncoso, Alicia
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW, 2022, : 834 - 841
  • [36] Forecasting algorithm adaptive automatically to time series length
    Onkov, Kolyo (kolonk@au-plovdiv.bg), 1600, Springer Science and Business Media, LLC (436):
  • [37] Trend elimination of time series of 24-hour load demand in the power system and its application in power forecasting
    Siwek, Krzysztof
    Osowski, Stanislaw
    Swiderski, Bartosz
    PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (03): : 249 - 253
  • [38] Applications of improved grey prediction model for power demand forecasting
    Hsu, CC
    Chen, CY
    ENERGY CONVERSION AND MANAGEMENT, 2003, 44 (14) : 2241 - 2249
  • [39] Incremental and Adaptive Feature Exploration over Time Series Stream
    Zuo, Jingwei
    Zeitouni, Karine
    Taher, Yehia
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 593 - 602
  • [40] Adaptive Incremental Learning Based Fuzzy Clustering of Time Series
    Wang L.
    Xu P.-P.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2019, 47 (05): : 983 - 991