2-Adic numbers in genetics and Rumer's symmetry

被引:13
|
作者
Kozyrev, S. V. [1 ]
Khrennikov, A. Yu. [2 ]
机构
[1] Russian Acad Sci, VA Steklov Math Inst, Moscow 119991, Russia
[2] Univ Vaxjo, Int Ctr Math Modeling Phys & Cognit Sci, S-35195 Vaxjo, Sweden
基金
俄罗斯基础研究基金会;
关键词
SYSTEMATIZATION;
D O I
10.1134/S1064562410010357
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A team of researchers conducted a study to propose an alternative approach to investigating genetics in mathematical physics. Their alternative approach consisted in considering a p-adic parameterization of the genetic code where the code was a locally constant mapping of a p-adic argument. The p-adic approach investigated the local constancy of mappings instead of the symmetry group. Variations of the genetic code violated its symmetry, but weakly affect the local constancy of the corresponding mapping. The study also investigated the division of the 2-adic plane of codons into the domains of strong and weak genetic code degeneration that were related to Rumer's symmetry.
引用
收藏
页码:128 / 130
页数:3
相关论文
共 50 条
  • [21] 2-Adic Stratification of Totients
    André Contiero
    Davi Lima
    Bulletin of the Brazilian Mathematical Society, New Series, 2022, 53 : 21 - 31
  • [22] 2-Adic Stratification of Totients
    Contiero, Andre
    Lima, Davi
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2022, 53 (01): : 21 - 31
  • [23] The 2-adic Order of the Tribonacci Numbers and the Equation T-n = m!
    Marques, Diego
    Lengyel, Tamas
    JOURNAL OF INTEGER SEQUENCES, 2014, 17 (10)
  • [24] 2-adic wavelet bases
    Evdokimov, S. A.
    Skopina, M. A.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2009, 15 (01): : 135 - 146
  • [25] 2-Adic wavelet bases
    S. A. Evdokimov
    M. A. Skopina
    Proceedings of the Steklov Institute of Mathematics, 2009, 266 : 143 - 154
  • [26] On the 2-adic complexity and the k-error 2-adic complexity of periodic binary sequences
    Hu, HG
    Feng, DG
    SEQUENCES AND THEIR APPLICATIONS - SETA 2004, 2005, 3486 : 185 - 196
  • [27] ON 2-ADIC MODULAR FORMS
    Koike, Masao
    KYUSHU JOURNAL OF MATHEMATICS, 2010, 64 (02) : 199 - 214
  • [28] The 2-adic analysis of Stirling numbers of the second kind via higher order Bernoulli numbers and polynomials
    Adelberg, Arnold
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2021, 17 (01) : 55 - 70
  • [29] 2-Adic wavelet bases
    Evdokimov, S. A.
    Skopina, M. A.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2009, 266 : S143 - S154
  • [30] Octic 2-adic fields
    Jones, John W.
    Roberts, David P.
    JOURNAL OF NUMBER THEORY, 2008, 128 (06) : 1410 - 1429