Anomalous diffusion in infinite horizon billiards

被引:35
|
作者
Armstead, DN [1 ]
Hunt, BR
Ott, E
机构
[1] Univ Maryland, Dept Phys, College Pk, MD 20904 USA
[2] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20904 USA
[3] Univ Maryland, Dept Math, College Pk, MD 20904 USA
[4] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20904 USA
[5] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20904 USA
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 02期
关键词
D O I
10.1103/PhysRevE.67.021110
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the long time dependence for the moments of displacement [\r\(q)] of infinite horizon billiards, given a bounded initial distribution of particles. For a variety of billiard models we find [\r\(q)]similar tot(q)(gamma) (up to factors of ln t). The time exponent, gamma(q), is piecewise linear and equal to q/2 for q<2 and q-1 for q>2. We discuss the lack of dependence of this result on the initial distribution of particles and resolve apparent discrepancies between this time dependence and a prior result. The lack of dependence on initial distribution follows from a remarkable scaling result that we obtain for the time evolution of the distribution function of the angle of a particle's velocity vector.
引用
收藏
页数:7
相关论文
共 50 条