Anomalous diffusion in infinite horizon billiards

被引:35
|
作者
Armstead, DN [1 ]
Hunt, BR
Ott, E
机构
[1] Univ Maryland, Dept Phys, College Pk, MD 20904 USA
[2] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20904 USA
[3] Univ Maryland, Dept Math, College Pk, MD 20904 USA
[4] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20904 USA
[5] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20904 USA
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 02期
关键词
D O I
10.1103/PhysRevE.67.021110
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the long time dependence for the moments of displacement [\r\(q)] of infinite horizon billiards, given a bounded initial distribution of particles. For a variety of billiard models we find [\r\(q)]similar tot(q)(gamma) (up to factors of ln t). The time exponent, gamma(q), is piecewise linear and equal to q/2 for q<2 and q-1 for q>2. We discuss the lack of dependence of this result on the initial distribution of particles and resolve apparent discrepancies between this time dependence and a prior result. The lack of dependence on initial distribution follows from a remarkable scaling result that we obtain for the time evolution of the distribution function of the angle of a particle's velocity vector.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Machta-Zwanzig regime of anomalous diffusion in infinite-horizon billiards
    Cristadoro, Giampaolo
    Gilbert, Thomas
    Lenci, Marco
    Sanders, David P.
    PHYSICAL REVIEW E, 2014, 90 (05):
  • [2] Measuring logarithmic corrections to normal diffusion in infinite-horizon billiards
    Cristadoro, Giampaolo
    Gilbert, Thomas
    Lenci, Marco
    Sanders, David P.
    PHYSICAL REVIEW E, 2014, 90 (02):
  • [3] Problem of transport in billiards with infinite horizon
    Courbage, M.
    Edelman, M.
    Fathi, S. M. Saberi
    Zaslavsky, G. M.
    PHYSICAL REVIEW E, 2008, 77 (03):
  • [4] On the decay of correlations in Sinai billiards with infinite horizon
    Dahlqvist, P
    Artuso, R
    PHYSICS LETTERS A, 1996, 219 (3-4) : 212 - 216
  • [5] Anomalous diffusion and dynamical localization in polygonal billiards
    Prosen, T
    Znidaric, M
    PHYSICAL REVIEW LETTERS, 2001, 87 (11) : art. no. - 114101
  • [6] Anomalous diffusion and dynamical localization in polygonal billiards
    Prosen, T.
    Žnidarič, M.
    2001, American Institute of Physics Inc. (87)
  • [7] Lyapunov exponents and anomalous diffusion of a Lorentz gas with infinite horizon using approximate zeta functions
    Dahlqvist, P
    JOURNAL OF STATISTICAL PHYSICS, 1996, 84 (3-4) : 773 - 795
  • [8] Infinite horizon billiards: Transport at the border between Gauss and Levy universality classes
    Zarfat, Lior
    Peletskyi, Alexander
    Barkai, Eli
    Denisov, Sergey
    PHYSICAL REVIEW E, 2019, 100 (04)
  • [9] Anomalous current in periodic Lorentz gases with infinite horizon
    Dolgopyat, D. I.
    Chernov, N. I.
    RUSSIAN MATHEMATICAL SURVEYS, 2009, 64 (04) : 651 - 699
  • [10] Billiards in infinite polygons
    Troubetzkoy, S
    NONLINEARITY, 1999, 12 (03) : 513 - 524