We consider the long time dependence for the moments of displacement [\r\(q)] of infinite horizon billiards, given a bounded initial distribution of particles. For a variety of billiard models we find [\r\(q)]similar tot(q)(gamma) (up to factors of ln t). The time exponent, gamma(q), is piecewise linear and equal to q/2 for q<2 and q-1 for q>2. We discuss the lack of dependence of this result on the initial distribution of particles and resolve apparent discrepancies between this time dependence and a prior result. The lack of dependence on initial distribution follows from a remarkable scaling result that we obtain for the time evolution of the distribution function of the angle of a particle's velocity vector.
机构:
NYU, Courant Inst Math Sci, New York, NY 10012 USAUniv Paris 07, UMR Mat & Syst Complexes 7057, F-75205 Paris 13, France
Edelman, M.
Fathi, S. M. Saberi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 07, UMR Mat & Syst Complexes 7057, F-75205 Paris 13, FranceUniv Paris 07, UMR Mat & Syst Complexes 7057, F-75205 Paris 13, France
Fathi, S. M. Saberi
Zaslavsky, G. M.
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Courant Inst Math Sci, New York, NY 10012 USA
NYU, Dept Phys, New York, NY 10003 USAUniv Paris 07, UMR Mat & Syst Complexes 7057, F-75205 Paris 13, France
机构:
Physics Department, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1111 Ljubljana, SloveniaPhysics Department, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1111 Ljubljana, Slovenia
Prosen, T.
Žnidarič, M.
论文数: 0引用数: 0
h-index: 0
机构:
Physics Department, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1111 Ljubljana, SloveniaPhysics Department, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1111 Ljubljana, Slovenia