A Synergic Potential of Antimicrobial Peptides against Pseudomonas syringae pv. actinidiae

被引:18
|
作者
Mariz-Ponte, Nuno [1 ,2 ,3 ]
Regalado, Laura [1 ,2 ]
Gimranov, Emil [1 ,2 ]
Tassi, Natalia [4 ]
Moura, Luisa [5 ]
Gomes, Paula [4 ]
Tavares, Fernando [1 ,3 ]
Santos, Conceicao [1 ,2 ]
Teixeira, Catia [4 ]
机构
[1] Univ Porto FCUP, Fac Sci, Biol Dept, P-4169007 Porto, Portugal
[2] Univ Porto, Fac Sci FCUP, Biol Dept, LAQV REQUIMTE, P-4169007 Porto, Portugal
[3] Univ Porto, Microbial Divers & Evolut Grp, In BIO Associate Lab, CIBIO Res Ctr Biodivers & Genet Resources, P-4485661 Vairao, Portugal
[4] Univ Porto, Fac Sci FCUP, Dept Chem & Biochem, LAQV REQUIMTE, P-4169007 Porto, Portugal
[5] Inst Politecn Viana Do Castelo, CISAS Ctr Res & Dev Agrifood Syst & Sustainabil, P-4900347 Viana Do Castelo, Portugal
来源
MOLECULES | 2021年 / 26卷 / 05期
基金
欧盟地平线“2020”;
关键词
3; 1; Actinidia sp; antimicrobial peptides; bacterial canker of kiwifruit; BP100; CA-M; Dhvar-5; Pseudomonas syringae pv; actinidiae; RW-BP100; FIELD-BASED EVIDENCE; COPPER CONTAMINATION; ERWINIA-AMYLOVORA; NEW-ZEALAND; RESISTANCE; MEMBRANES; MECHANISM; EFFICACY; STRAINS; CANKER;
D O I
10.3390/molecules26051461
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Pseudomonas syringae pv. actinidiae (Psa) is the pathogenic agent responsible for the bacterial canker of kiwifruit (BCK) leading to major losses in kiwifruit productions. No effective treatments and measures have yet been found to control this disease. Despite antimicrobial peptides (AMPs) having been successfully used for the control of several pathogenic bacteria, few studies have focused on the use of AMPs against Psa. In this study, the potential of six AMPs (BP100, RW-BP100, CA-M, 3.1, D4E1, and Dhvar-5) to control Psa was investigated. The minimal inhibitory and bactericidal concentrations (MIC and MBC) were determined and membrane damaging capacity was evaluated by flow cytometry analysis. Among the tested AMPs, the higher inhibitory and bactericidal capacity was observed for BP100 and CA-M with MIC of 3.4 and 3.4-6.2 mu M, respectively and MBC 3.4-10 mu M for both. Flow cytometry assays suggested a faster membrane permeation for peptide 3.1, in comparison with the other AMPs studied. Peptide mixtures were also tested, disclosing the high efficiency of BP100:3.1 at low concentration to reduce Psa viability. These results highlight the potential interest of AMP mixtures against Psa, and 3.1 as an antimicrobial molecule that can improve other treatments in synergic action.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Highly specific assays to detect isolates of Pseudomonas syringae pv. actinidiae biovar 3 and Pseudomonas syringae pv. actinidifoliorum directly from plant material
    Andersen, M. T.
    Templeton, M. D.
    Rees-George, J.
    Vanneste, J. L.
    Cornish, D. A.
    Yu, J.
    Cui, W.
    Braggins, T. J.
    Babu, K.
    Mackay, J. F.
    Rikkerink, E. H. A.
    PLANT PATHOLOGY, 2018, 67 (05) : 1220 - 1230
  • [42] Diversity and characterization of antagonistic bacteria against Pseudomonas syringae pv. actinidiae isolated from kiwifruit rhizosphere
    Yan, Zhewei
    Fu, Min
    Mir, Sajad Hussain
    Zhang, Lixin
    FEMS MICROBIOLOGY LETTERS, 2023, 370
  • [43] Isolation and Characterization of Bacteriophages Against Pseudomonas syringae pv. actinidiae Causing Bacterial Canker Disease in Kiwifruit
    Yu, Ji-Gang
    Lim, Jeong-A
    Song, Yu-Rim
    Heu, Sunggi
    Kim, Gyoung Hee
    Koh, Young Jin
    Oh, Chang-Sik
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2016, 26 (02) : 385 - 393
  • [44] LACCASE35 enhances lignification and resistance against Pseudomonas syringae pv. actinidiae infection in kiwifruit
    Li, Yawei
    Zhang, Dongle
    Wang, Xiaojie
    Bai, Fuxi
    Li, Rui
    Zhou, Rongrong
    Wu, Shunyuan
    Fang, Zemin
    Liu, Wei
    Huang, Lili
    Liu, Pu
    PLANT PHYSIOLOGY, 2025, 197 (02)
  • [45] Identification of Bacteriophages for Biocontrol of the Kiwifruit Canker Phytopathogen Pseudomonas syringae pv. actinidiae
    Frampton, Rebekah A.
    Taylor, Corinda
    Moreno, Angela V. Holguin
    Visnovsky, Sandra B.
    Petty, Nicola K.
    Pitman, Andrew R.
    Fineran, Peter C.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2014, 80 (07) : 2216 - 2228
  • [46] First Report of Pseudomonas syringae pv. actinidiae on Kiwifruit Pollen from Argentina
    Balestra, G. M.
    Buriani, G.
    Cellini, A.
    Donati, I.
    Mazzaglia, A.
    Spinelli, F.
    PLANT DISEASE, 2018, 102 (01) : 237 - 237
  • [47] Characterization and phylogenetic analysis of Pseudomonas syringae pv. actinidiae isolates from Greece
    Dimitris Malliarakis
    Theoktisti Papazoglou
    Evaggelia Mpalantinaki
    Marianthi G. Pagoulatou
    Thomas Thomidis
    Dimitrios E. Goumas
    Journal of Plant Pathology, 2023, 105 : 1617 - 1627
  • [48] Investigating a novel biosynthetic pathway in the kiwifruit pathogen Pseudomonas syringae pv. actinidiae
    Mitsugi, L.
    Jayaraman, J.
    Templeton, M. D.
    Bulloch, E.
    MOLECULAR PLANT-MICROBE INTERACTIONS, 2024, 37 (05) : 30 - 31
  • [49] In vitro evaluation of Actinidia chinensis cultivars for their resistance to Pseudomonas syringae pv. actinidiae
    Wang, Fa-ming
    Gao, Jian-you
    Li, Jie-wei
    Liu, Cui-xia
    Mo, Quan-hui
    Liu, Pu
    Tang, Wei
    Gong, Hong-juan
    Qi, Bei-bei
    Liu, Ping-ping
    Jiang, Qiao-sheng
    Ye, Kai-yu
    SCIENTIA HORTICULTURAE, 2023, 313
  • [50] The Italian inter-laboratory study on the detection of Pseudomonas syringae pv. actinidiae
    Loreti, Stefania
    Pucci, Nicoletta
    Gallelli, Angela
    Minardi, Paola
    Ardizzi, Stefano
    Balestra, Giorgio Mariano
    Mazzaglia, Angelo
    Taratufolo, Maria Claudia
    PHYTOPATHOLOGIA MEDITERRANEA, 2014, 53 (01) : 159 - 167