Smoothed model checking for uncertain Continuous-Time Markov Chains

被引:39
|
作者
Bortolussi, Luca [1 ,2 ,3 ]
Milios, Dimitrios [4 ]
Sanguinetti, Guido [4 ,5 ]
机构
[1] Univ Trieste, Dept Math & Geosci, I-34127 Trieste, Italy
[2] Univ Saarland, Modelling & Simulat Grp, D-66123 Saarbrucken, Germany
[3] CNR ISTI, Pisa, Italy
[4] Univ Edinburgh, Sch Informat, Edinburgh EH8 9YL, Midlothian, Scotland
[5] Univ Edinburgh, SynthSys, Ctr Synthet & Syst Biol, Edinburgh EH8 9YL, Midlothian, Scotland
关键词
Model checking; Uncertainty; Continuous-Time Markov Chains; Gaussian Processes; PARAMETER SYNTHESIS; SIMULATION; BEHAVIOR;
D O I
10.1016/j.ic.2016.01.004
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the problem of computing the satisfaction probability of a formula for stochastic models with parametric uncertainty. We show that this satisfaction probability is a smooth function of the model parameters under mild conditions. This enables us to devise a novel Bayesian statistical algorithm which performs model checking simultaneously for all values of the model parameters from observations of truth values of the formula over individual runs of the model at isolated parameter values. This is achieved by exploiting the smoothness of the satisfaction function: by modelling explicitly correlations through a prior distribution over a space of smooth functions (a Gaussian Process), we can condition on observations at individual parameter values to construct an analytical approximation of the function itself. Extensive experiments on non-trivial case studies show that the approach is accurate and considerably faster than naive parameter exploration with standard statistical model checking methods. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:235 / 253
页数:19
相关论文
共 50 条
  • [21] Interval Continuous-Time Markov Chains Simulation
    Galdino, Sergio
    2013 INTERNATIONAL CONFERENCE ON FUZZY THEORY AND ITS APPLICATIONS (IFUZZY 2013), 2013, : 273 - 278
  • [22] On Nonergodicity of Some Continuous-Time Markov Chains
    D. B. Andreev
    E. A. Krylov
    A. I. Zeifman
    Journal of Mathematical Sciences, 2004, 122 (4) : 3332 - 3335
  • [23] Perturbation analysis for continuous-time Markov chains
    YuanYuan Liu
    Science China Mathematics, 2015, 58 : 2633 - 2642
  • [24] SIMILAR STATES IN CONTINUOUS-TIME MARKOV CHAINS
    Yap, V. B.
    JOURNAL OF APPLIED PROBABILITY, 2009, 46 (02) : 497 - 506
  • [25] Matrix Analysis for Continuous-Time Markov Chains
    Le, Hung, V
    Tsatsomeros, M. J.
    SPECIAL MATRICES, 2021, 10 (01): : 219 - 233
  • [26] Algorithmic Randomness in Continuous-Time Markov Chains
    Huang, Xiang
    Lutz, Jack H.
    Migunov, Andrei N.
    2019 57TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2019, : 615 - 622
  • [27] Path integrals for continuous-time Markov chains
    Pollett, PK
    Stefanov, VT
    JOURNAL OF APPLIED PROBABILITY, 2002, 39 (04) : 901 - 904
  • [28] Maxentropic continuous-time homogeneous Markov chains☆
    Bolzern, Paolo
    Colaneri, Patrizio
    De Nicolao, Giuseppe
    AUTOMATICA, 2025, 175
  • [29] Convergence of Continuous-Time Imprecise Markov Chains
    De Bock, Jasper
    PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITY: THEORIES AND APPLICATIONS (ISIPTA '15), 2015, : 337 - 337
  • [30] Ergodic degrees for continuous-time Markov chains
    Yonghua Mao
    Science in China Series A: Mathematics, 2004, 47 : 161 - 174