Smoothed model checking for uncertain Continuous-Time Markov Chains

被引:39
|
作者
Bortolussi, Luca [1 ,2 ,3 ]
Milios, Dimitrios [4 ]
Sanguinetti, Guido [4 ,5 ]
机构
[1] Univ Trieste, Dept Math & Geosci, I-34127 Trieste, Italy
[2] Univ Saarland, Modelling & Simulat Grp, D-66123 Saarbrucken, Germany
[3] CNR ISTI, Pisa, Italy
[4] Univ Edinburgh, Sch Informat, Edinburgh EH8 9YL, Midlothian, Scotland
[5] Univ Edinburgh, SynthSys, Ctr Synthet & Syst Biol, Edinburgh EH8 9YL, Midlothian, Scotland
关键词
Model checking; Uncertainty; Continuous-Time Markov Chains; Gaussian Processes; PARAMETER SYNTHESIS; SIMULATION; BEHAVIOR;
D O I
10.1016/j.ic.2016.01.004
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the problem of computing the satisfaction probability of a formula for stochastic models with parametric uncertainty. We show that this satisfaction probability is a smooth function of the model parameters under mild conditions. This enables us to devise a novel Bayesian statistical algorithm which performs model checking simultaneously for all values of the model parameters from observations of truth values of the formula over individual runs of the model at isolated parameter values. This is achieved by exploiting the smoothness of the satisfaction function: by modelling explicitly correlations through a prior distribution over a space of smooth functions (a Gaussian Process), we can condition on observations at individual parameter values to construct an analytical approximation of the function itself. Extensive experiments on non-trivial case studies show that the approach is accurate and considerably faster than naive parameter exploration with standard statistical model checking methods. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:235 / 253
页数:19
相关论文
共 50 条
  • [1] Approximate symbolic model checking of continuous-time Markov chains
    Baier, C
    Katoen, JP
    Hermanns, P
    CONCUR'99: CONCURRENCY THEORY, 1999, 1664 : 146 - 161
  • [2] Model checking conditional CSL for continuous-time Markov chains
    Gao, Yang
    Xu, Ming
    Zhan, Naijun
    Zhang, Lijun
    INFORMATION PROCESSING LETTERS, 2013, 113 (1-2) : 44 - 50
  • [3] Model-checking algorithms for continuous-time Markov chains
    Baier, C
    Haverkort, B
    Hermanns, H
    Katoen, JP
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2003, 29 (06) : 524 - 541
  • [4] Lumpability for Uncertain Continuous-Time Markov Chains
    Cardelli, Luca
    Grosu, Radu
    Larsen, Kim G.
    Tribastone, Mirco
    Tschaikowski, Max
    Vandin, Andrea
    QUANTITATIVE EVALUATION OF SYSTEMS (QEST 2021), 2021, 12846 : 391 - 409
  • [5] Algorithmic Minimization of Uncertain Continuous-Time Markov Chains
    Cardelli, Luca
    Grosu, Radu
    Larsen, Kim Guldstrand
    Tribastone, Mirco
    Tschaikowski, Max
    Vandin, Andrea
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (11) : 6557 - 6572
  • [6] MODEL CHECKING OF CONTINUOUS-TIME MARKOV CHAINS AGAINST TIMED AUTOMATA SPECIFICATIONS
    Chen, Taolue
    Han, Tingting
    Katoen, Joost-Pieter
    Mereacre, Alexandru
    LOGICAL METHODS IN COMPUTER SCIENCE, 2011, 7 (01)
  • [7] Time-Bounded Model Checking of Infinite-State Continuous-Time Markov Chains
    Zhang, Lijun
    Hermanns, Holger
    Hahn, E. Moritz
    Wachter, Bjoern
    2008 8TH INTERNATIONAL CONFERENCE ON APPLICATION OF CONCURRENCY TO SYSTEM DESIGN, PROCEEDINGS, 2008, : 98 - 107
  • [8] Time-Bounded Model Checking of Infinite-State Continuous-Time Markov Chains
    Hahn, E. Moritz
    Hermanns, Holger
    Wachter, Bjoern
    Zhang, Lijun
    FUNDAMENTA INFORMATICAE, 2009, 95 (01) : 129 - 155
  • [9] Model checking of continuous-time Markov chains by closed-form bounding distributions
    Ben Mamoun, Mouad
    Pekergin, Nihal
    Younes, Sana
    QEST 2006: THIRD INTERNATIONAL CONFERENCE ON THE QUANTITATIVE EVALUATION OF SYSTEMS, 2006, : 189 - +
  • [10] Quantitative Model Checking of Continuous-Time Markov Chains Against Timed Automata Specifications
    Chen, Taolue
    Han, Tingting
    Katoen, Joost-Pieter
    Mereacre, Alexandru
    24TH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 2009, : 309 - 318