ANALYSIS, COLLIGATION, AND INVESTIGATION OF THE THERMAL CONDUCTIVITY OF FUEL COMPOSITIONS BASED ON URANIUM MONONITRIDE

被引:2
|
作者
Vybyvanets, V. I. [1 ]
Taubin, M. L. [1 ]
Solntseva, E. S. [1 ]
Galev, I. E. [1 ]
Baranov, V. G. [2 ]
Tenishev, A. V. [2 ]
Khomyakov, O. V. [2 ]
机构
[1] Luch Res Inst & Sci Ind Assoc NII NPO Luch, Podolsk, Moscow Oblast, Russia
[2] Natl Res Nucl Univ MEPhI, Moscow Engn Phys Inst, Moscow, Russia
关键词
NITRIDE FUEL;
D O I
10.1007/s10512-015-9919-3
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The aims of this work were to compare the results of studies performed by the present authors using the existing data on the thermal conductivity of uranium mononitride and colligate and analyze the thermal conductivity of mixed uranium-plutonium fuel. The dependence of the thermal conductivity on the content of impurities and the porosity of a material was investigated. It was shown that there is a discrepancy in the experimental data. Since it determines the presence of impurities and porosity, the technology used to fabricate the fuel has a considerable effect on the change in the thermal conductivity.
引用
收藏
页码:257 / 264
页数:8
相关论文
共 50 条
  • [31] Analysis of radially resolved thermal conductivity in high burnup mixed oxide fuel and comparison to thermal conductivity correlations implemented in fuel performance codes
    Ferrigno, Joshua
    Pavlov, Tsvetoslav
    Poudel, Narayan
    Salvato, Daniele
    Tsai, Chuting
    Merritt, Brian
    Hansen, Alex
    Munro, Troy
    Cappia, Fabiola
    Khafizov, Marat
    JOURNAL OF NUCLEAR MATERIALS, 2024, 596
  • [32] Neutronic analysis of fuel assembly design in Small-PWR using uranium mononitride fully ceramic micro-encapsulated fuel using SCALE and Serpent codes
    Hakim, Arief Rahman
    Harto, Andang Widi
    Agung, Alexander
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2019, 51 (01) : 1 - 12
  • [33] Numerical investigation of effective thermal conductivity of gas diffusion layer of the PEM fuel cell
    Lee, S. H.
    Nam, J. H.
    Kim, C. J.
    Kim, H. M.
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2024, 85 (09) : 1356 - 1378
  • [34] Erratum to: Investigation of Modified UO2 Fuel with Anomalously High Thermal Conductivity
    I. S. Kurina
    V. V. Popov
    V. N. Rumyantsev
    V. M. Ryabyi
    M. I. Zakharova
    A. B. Gaiduchenko
    M. Yu. Kuz’min
    G. E. Kiknadze
    F. N. Kryukov
    S. V. Kuz’min
    Atomic Energy, 2016, 119 : 372 - 372
  • [35] Analysis of aerogel thermal conductivity based on the microstructure
    Zhao, Jun-Jie
    Yu, Hai-Tong
    Duan, Yuan-Yuan
    Wang, Xiao-Dong
    Wang, Bu-Xuan
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2013, 34 (10): : 1926 - 1930
  • [36] Uranium dioxide - Molybdenum composite fuel pellets with enhanced thermal conductivity manufactured via spark plasma sintering
    Buckley, J.
    Turner, J. D.
    Abram, T. J.
    JOURNAL OF NUCLEAR MATERIALS, 2019, 523 : 360 - 368
  • [37] Investigation on improvement of thermal conductivity of PCM based on a simple method
    Jia Dai-yong
    Du Yan-xia
    Cheng Bao-yi
    Mao Jin-feng
    Yuan Yan-ping
    PROCEEDINGS OF THE 3RD ASIAN CONFERENCE ON REFRIGERATION AND AIR-CONDITIONING VOLS I AND II, 2006, : 661 - +
  • [38] Experimental investigation and modelling on the thermal conductivity of CNTs based nanofluids
    Xing, Meibo
    Yu, Jianlin
    Wang, Ruixiang
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2016, 104 : 404 - 411
  • [39] Experimental Investigation of Thermal Conductivity of Paraffin Based Nanocomposite for TES
    Owolabi, Afolabi Lukmon
    Al-Kayiem, Hussain H.
    Baheta, Aklilu Tesfamichael
    Lin, Saw Chun
    4TH MECHANICAL AND MANUFACTURING ENGINEERING, PTS 1 AND 2, 2014, 465-466 : 181 - 185
  • [40] Thermal conductivity analysis of SiC ceramics and fully ceramic microencapsulated fuel composites
    Lee, Hyeon-Geun
    Kim, Daejong
    Lee, Seung Jae
    Park, Ji Yeon
    Kim, Weon-Ju
    NUCLEAR ENGINEERING AND DESIGN, 2017, 311 : 9 - 15