An Adjacent Atomic Platinum Site Enables Single-Atom Iron with High Oxygen Reduction Reaction Performance

被引:325
|
作者
Han, Ali [1 ]
Wang, Xijun [2 ]
Tang, Kun [3 ]
Zhang, Zedong [1 ]
Ye, Chenliang [1 ]
Kong, Kejian [1 ]
Hu, Haibo [3 ]
Zheng, Lirong [4 ]
Jiang, Peng [1 ]
Zhao, Changxin [5 ]
Zhang, Qiang [5 ]
Wang, Dingsheng [1 ]
Li, Yadong [1 ]
机构
[1] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China
[2] Univ Sci & Technol China, Sch Chem & Mat Sci, CAS Ctr Excellence Nanosci, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[3] Anhui Univ, Sch Phys & Mat Sci, Hefei 230601, Peoples R China
[4] Chinese Acad Sci, Beijing Synchrotron Radiat Facil Inst High Energy, 19 Yuquan Rd, Beijing 100049, Peoples R China
[5] Tsinghua Univ, Beijing Key Lab Green Chem React Engn & Technol, Dept Chem Engn, Beijing 100084, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
dual atomic sites; modulation effect; oxygen reduction reaction; platinum; single-atom catalysts; DOPED CARBON; CATALYSTS; ELECTROCATALYSTS; COBALT; MODEL;
D O I
10.1002/anie.202105186
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The modulation effect has been widely investigated to tune the electronic state of single-atomic M-N-C catalysts to enhance the activity of oxygen reduction reaction (ORR). However, the in-depth study of modulation effect is rarely reported for the isolated dual-atomic metal sites. Now, the catalytic activities of Fe-N-4 moiety can be enhanced by the adjacent Pt-N-4 moiety through the modulation effect, in which the Pt-N-4 acts as the modulator to tune the 3d electronic orbitals of Fe-N-4 active site and optimize ORR activity. Inspired by this principle, we design and synthesize the electrocatalyst that comprises isolated Fe-N-4/Pt-N-4 moieties dispersed in the nitrogen-doped carbon matrix (Fe-N-4/Pt-N-4@NC) and exhibits a half-wave potential of 0.93 V vs. RHE and negligible activity degradation (Delta E-1/2 = 8 mV) after 10000 cycles in 0.1 M KOH. We also demonstrate that the modulation effect is not effective for optimizing the ORR performances of Co-N-4/Pt-N-4 and Mn-N-4/Pt-N-4 systems.
引用
收藏
页码:19262 / 19271
页数:10
相关论文
共 50 条
  • [41] A review of advancements in theoretical simulation of oxygen reduction reaction and oxygen evolution reaction single-atom catalysts
    Ma, Ninggui
    Xiong, Yu
    Wang, Yuhang
    Zhang, Yaqin
    Wang, Qianqian
    Luo, Shuang
    Zhao, Jun
    Huang, Changxiong
    Fan, Jun
    MATERIALS TODAY SUSTAINABILITY, 2024, 27
  • [42] Synthesis and Active Site Identification of Fe-N-C Single-Atom Catalysts for the Oxygen Reduction Reaction
    Wan, Xin
    Chen, Weiqi
    Yang, Jiarui
    Liu, Mengchan
    Liu, Xiaofang
    Shui, Jianglan
    CHEMELECTROCHEM, 2019, 6 (02) : 304 - 315
  • [43] Two-dimensional conjugated aromatic networks as high-site-density and single-atom electrocatalysts towards oxygen reduction reaction
    Yang, Shaoxuan
    Yu, Yihuan
    Dou, Meiling
    Zhang, Zhengping
    Wang, Feng
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [44] Single-Atom Iron Catalyst Based on Functionalized Mesophase Pitch Exhibiting Efficient Oxygen Reduction Reaction Activity
    Gu, Xianrui
    Wang, Meng
    Peng, Hongpeng
    Peng, Qian
    Wang, Wei
    Wang, Houpeng
    Shi, Junjun
    Qin, Xuetao
    Da, Zhijian
    Yang, Wenhong
    Wu, Yuchao
    Ma, Ding
    Dai, Houliang
    CATALYSTS, 2022, 12 (12)
  • [45] Framework-Derived Tungsten Single-Atom Catalyst for Oxygen Reduction Reaction
    Jiang, Bizhi
    Sun, Hao
    Yuan, Tao
    He, Wenhao
    Zheng, Changlin
    Zhang, Hui-Juan
    Yang, Junhe
    Zheng, Shiyou
    ENERGY & FUELS, 2021, 35 (09) : 8173 - 8180
  • [46] Platinum Single-Atom catalysts confined in NH2-UIO-66 for highly selective oxygen reduction reaction
    Li, Yuxin
    Li, Zekun
    Wang, Zhao
    MATERIALS LETTERS, 2023, 352
  • [47] Unconventional Oxygen Reduction Reaction Mechanism and Scaling Relation on Single-Atom Catalysts
    Zhong, Lixiang
    Li, Shuzhou
    ACS CATALYSIS, 2020, 10 (07): : 4313 - 4318
  • [48] Theoretical Approaches to Describing the Oxygen Reduction Reaction Activity of Single-Atom Catalysts
    Patel, Anjli M.
    Ringe, Stefan
    Siahrostami, Samira
    Bajdich, Michal
    Norskov, Jens K.
    Kulkarni, Ambarish R.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (51): : 29307 - 29318
  • [49] Evaluating the Catalytic Efficiency of Paired, Single-Atom Catalysts for the Oxygen Reduction Reaction
    Hunter, Michelle A.
    Fischer, Julia M. T. A.
    Yuan, Qinghong
    Hankel, Marlies
    Searles, Debra J.
    ACS CATALYSIS, 2019, 9 (09) : 7660 - 7667
  • [50] Two-electron oxygen reduction reaction by high-loading molybdenum single-atom catalysts
    Xuan Zhao
    Yan-Guang Li
    Rare Metals, 2020, 39 : 455 - 457