Maximum likelihood estimation in the non-ergodic fractional Vasicek model

被引:6
|
作者
Lohvinenko, Stanislav [1 ]
Ralchenko, Kostiantyn [1 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Dept Probabil Theory Stat & Actuarial Math, 64 Volodymyrska St, UA-01601 Kiev, Ukraine
来源
关键词
Fractional Brownian motion; fractional Vasicek model; maximum likelihood estimation; moment generating function; asymptotic distribution; non-ergodic process; ORNSTEIN-UHLENBECK PROCESS; PARAMETER-ESTIMATION; ASYMPTOTIC THEORY; DISTRIBUTIONS;
D O I
10.15559/19-VMSTA140
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the fractional Vasicek model described by the stochastic differential equation dX(t) = (alpha - beta X-t) dt + gamma dB(t)(H), X-0 = x(0), driven by the fractional Brownian motion B-H with the known Hurst parameter H is an element of(1/2, 1). We study the maximum likelihood estimators for unknown parameters alpha and beta in the non-ergodic case (when beta < 0) for arbitrary x(0) is an element of R, generalizing the result of Tanaka, Xiao and Yu (2019) for particular x(0) = alpha/beta, derive their asymptotic distributions and prove their asymptotic independence.
引用
收藏
页码:377 / 395
页数:19
相关论文
共 50 条
  • [21] Ergodic and non-ergodic clustering of inertial particles
    Gustavsson, K.
    Mehlig, B.
    EPL, 2011, 96 (06)
  • [22] On non-ergodic asset prices
    Horst, Ulrich
    Wenzelburger, Jan
    ECONOMIC THEORY, 2008, 34 (02) : 207 - 234
  • [23] Non-ergodic delocalization in the Rosenzweig-Porter model
    von Soosten, Per
    Warzel, Simone
    LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (04) : 905 - 922
  • [24] Non-ergodic laser cooling
    Cohen-Tannoudji, C
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 355 (1733): : 2219 - 2221
  • [25] THE NON-ERGODIC JACKSON NETWORK
    GOODMAN, JB
    MASSEY, WA
    JOURNAL OF APPLIED PROBABILITY, 1984, 21 (04) : 860 - 869
  • [26] On non-ergodic asset prices
    Ulrich Horst
    Jan Wenzelburger
    Economic Theory, 2008, 34 : 207 - 234
  • [27] RANDOMNESS AND NON-ERGODIC SYSTEMS
    Franklin, Johanna N. Y.
    Towsner, Henry
    MOSCOW MATHEMATICAL JOURNAL, 2014, 14 (04) : 711 - 744
  • [28] Ergodic to non-ergodic transition in low concentration Laponite
    Ruzicka, B
    Zulian, L
    Ruocco, G
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (42) : S4993 - S5002
  • [29] Statistical analysis of the non-ergodic fractional Ornstein–Uhlenbeck process with periodic mean
    Rachid Belfadli
    Khalifa Es-Sebaiy
    Fatima-Ezzahra Farah
    Metrika, 2022, 85 : 885 - 911
  • [30] Non-ergodic extended phase of the Quantum Random Energy model
    Faoro, Lara
    Feigel'man, Mikhail V.
    Ioffe, Lev
    ANNALS OF PHYSICS, 2019, 409