To construct layer adapted meshes for a class of singularly perturbed problems, whose solutions contain boundary layers, it is necessary to identify both the location and the width of any boundary layers present in the solution. Additional interior layers can appear when the data for the problem is not sufficiently smooth. In the context of singularly perturbed partial differential equations, the presence of any interior layer typically requires the introduction of a transformation of the problem, which facilitates the necessary alignment of the mesh to the trajectory of the interior layer. Here we review a selection of published results on such problems to illustrate the variety of ways that interior layers can appear.
机构:
SRMIST, Res Inst, Kattankulathur, Tamil Nadu, India
SRMIST, Dept Math, Kattankulathur, Tamil Nadu, IndiaSRMIST, Res Inst, Kattankulathur, Tamil Nadu, India
Dubey, Ritesh Kumar
Gupta, Vikas
论文数: 0引用数: 0
h-index: 0
机构:
LNM Inst Informat Technol, Dept Math, Jaipur, Rajasthan, IndiaSRMIST, Res Inst, Kattankulathur, Tamil Nadu, India
机构:
Bharathidasan Univ, Dept Math, Sch Math Sci, Tiruchirappalli 620024, Tamil Nadu, IndiaBharathidasan Univ, Dept Math, Sch Math Sci, Tiruchirappalli 620024, Tamil Nadu, India
Subburayan, V.
Ramanujam, N.
论文数: 0引用数: 0
h-index: 0
机构:
Bharathidasan Univ, Dept Math, Sch Math Sci, Tiruchirappalli 620024, Tamil Nadu, IndiaBharathidasan Univ, Dept Math, Sch Math Sci, Tiruchirappalli 620024, Tamil Nadu, India
机构:
Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Shandong, Peoples R ChinaShandong Normal Univ, Sch Math & Stat, Jinan 250014, Shandong, Peoples R China
Zhang, Jin
Liu, Xiaowei
论文数: 0引用数: 0
h-index: 0
机构:
Qilu Univ Technol, Shandong Acad Sci, Coll Sci, Jinan 250353, Shandong, Peoples R ChinaShandong Normal Univ, Sch Math & Stat, Jinan 250014, Shandong, Peoples R China