Radon Transform on Sobolev Spaces

被引:4
|
作者
Sharafutdinov, V. A. [1 ]
机构
[1] Sobolev Inst Math, Novosibirsk, Russia
关键词
Radon transform; Sobolev spaces; Reshetnyak formula;
D O I
10.1134/S0037446621030198
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Radon transform R maps a function f on R-n to the family of the integrals of f over all hyperplanes. The classical Reshetnyak formula (also called the Plancherel formula for the Radon transform) states that parallel to f parallel to L-2(R-n) = parallel to Rf parallel to(H(n-1)/2(n-1)/2(Sn-1 x R),) where parallel to.parallel to H(n- 1)/2(n-1)/2(Sn-1 x R) is some special norm. The formula extends the Radon transform to the bijective Hilbert space isometry R : L-2(R-n) -> H-(n-1)/2,e((n-1)/2)(Sn-1 x R). Given reals r, s, and t > - n/2, we introduce the Sobolev type spaces H-t((r,s)) (R-n) and H-(r,s)(t,e) (Sn-1 x R) and prove the version of the Reshetnyak formula: parallel to f parallel to((r,s))(Ht) (R-n) = parallel to Rf parallel to(Ht+(n-1)/2(r,(s+n- 1)/2)(Sn-1 x R)). The formula extends the Radon transform to the bijective Hilbert space isometry R : H-t((r,s)) (R-n) -> Ht+(n-1)/2,(e(r,s+(n-1)/2)) (Sn-1 x R). If r >= 0 and s >= 0 are integers then H-0,e((r,s)) (Sn-1 x R) consists of the even functions phi(xi, p) with square integrable derivatives of order <= r with respect to xi and order <= s with respect to p.
引用
收藏
页码:560 / 580
页数:21
相关论文
共 50 条
  • [31] Approximation of linear canonical wavelet transform on the generalized Sobolev spaces
    Akhilesh Prasad
    Z. A. Ansari
    Journal of Pseudo-Differential Operators and Applications, 2019, 10 : 855 - 881
  • [32] The continuous fractional wavelet transform on generalized weighted Sobolev spaces
    Prasad, Akhilesh
    Kumar, Praveen
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2015, 8 (03)
  • [33] Holomorphic Sobolev spaces and the generalized Segal-Bargmann transform
    Hall, BC
    Lewkeeratiyutkul, W
    JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 217 (01) : 192 - 220
  • [34] Approximation of linear canonical wavelet transform on the generalized Sobolev spaces
    Prasad, Akhilesh
    Ansari, Z. A.
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2019, 10 (04) : 855 - 881
  • [35] On the Exponential Radon Transform and Its Extension to Certain Functions Spaces
    Al-Omari, S. K. Q.
    Kilicman, A.
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [36] THE HOROSPHERICAL CAUCHY-RADON TRANSFORM ON COMPACT SYMMETRIC SPACES
    Gindikin, Simon
    MOSCOW MATHEMATICAL JOURNAL, 2006, 6 (02) : 299 - 305
  • [37] Mixed norm estimate for Radon transform on weighted Lp spaces
    Ashisha Kumar
    Swagato K. Ray
    Proceedings - Mathematical Sciences, 2010, 120 : 441 - 456
  • [38] Mixed norm estimate for Radon transform on weighted Lp spaces
    Kumar, Ashisha
    Ray, Swagato K.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2010, 120 (04): : 441 - 456
  • [39] Dirac-Sobolev Spaces and Sobolev Spaces
    Ichinose, Takashi
    Saito, Yoshimi
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2010, 53 (02): : 291 - 310
  • [40] RANGE CHARACTERIZATION OF RAY TRANSFORM ON SOBOLEV SPACES OF SYMMETRIC TENSOR FIELDS
    Krishnan, Venkateswaran P.
    Sharafutdinov, Vladimir A.
    INVERSE PROBLEMS AND IMAGING, 2024,