Analysis of spatiotemporal patterns in a single species reaction-diffusion model with spatiotemporal delay

被引:14
|
作者
Yang, Gaoxiang [1 ]
Xu, Jian [1 ]
机构
[1] Tongji Univ, Sch Aerosp Engn & Appl Mech, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
Spatiotemporal patterns; Turing bifurcation; Spatiotemporal delay; Multiple scale method; Amplitude equations; PERIODIC TRAVELING-WAVES; PREDATOR-PREY MODEL; TURING INSTABILITY; SYSTEM; BIFURCATION; STABILITY;
D O I
10.1016/j.nonrwa.2014.07.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Employing the theories of Turing bifurcation in the partial differential equations, we investigate the dynamical behavior of a single species reaction-diffusion model with spatiotemporal delay. The linear stability and the conditions for the occurrence of Turing bifurcation in this model are obtained. Moreover, the amplitude equations which represent different spatiotemporal patterns are also obtained near the Turing bifurcation point by using multiple scale method. In Turing space, it is found that the spatiotemporal distributions of the density of this researched species have spots pattern and stripes pattern. Finally, some numerical simulations corresponding to the different spatiotemporal patterns are given to verify our theoretical analysis. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:54 / 65
页数:12
相关论文
共 50 条
  • [1] Nonlocal delay driven spatiotemporal patterns in a single-species reaction-diffusion model
    Wang, Wen
    Liu, Shutang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 117
  • [2] Bifurcation phenomena in a single-species reaction-diffusion model with spatiotemporal delay
    Yang, Gaoxiang
    Li, Xiaoyu
    AIMS MATHEMATICS, 2021, 6 (07): : 6687 - 6698
  • [3] Bifurcation analysis and spatiotemporal patterns in delayed Schnakenberg reaction-diffusion model
    Yang, Rui
    APPLICABLE ANALYSIS, 2023, 102 (02) : 672 - 693
  • [4] Effects of chemotaxis and time delay on the spatiotemporal patterns of a two-species reaction-diffusion system
    Zuo, Wenjie
    Song, Binbin
    Chen, Yuming
    CHAOS SOLITONS & FRACTALS, 2025, 190
  • [5] Spatiotemporal patterns in the Lengyel-Epstein reaction-diffusion model
    Yaying Dong
    Shunli Zhang
    Shanbing Li
    Advances in Difference Equations, 2016
  • [6] Spatiotemporal patterns in the Lengyel-Epstein reaction-diffusion model
    Dong, Yaying
    Zhang, Shunli
    Li, Shanbing
    ADVANCES IN DIFFERENCE EQUATIONS, 2016, : 1 - 15
  • [7] Cross-diffusion induced spatiotemporal patterns in Schnakenberg reaction-diffusion model
    Yang, Rui
    NONLINEAR DYNAMICS, 2022, 110 (02) : 1753 - 1766
  • [8] Spatiotemporal patterns in a reaction-diffusion model with the Degn-Harrison reaction scheme
    Peng, Rui
    Yi, Feng-qi
    Zhao, Xiao-qiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (06) : 2465 - 2498
  • [9] Spatiotemporal Patterns in a Delayed Reaction-Diffusion Mussel-Algae Model
    Shen, Zuolin
    Wei, Junjie
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (12):
  • [10] Spatiotemporal Patterns of a Reaction-Diffusion Substrate-Inhibition Seelig Model
    Yi, Fengqi
    Liu, Siyu
    Tuncer, Necibe
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2017, 29 (01) : 219 - 241