Bifurcation analysis and spatiotemporal patterns in delayed Schnakenberg reaction-diffusion model

被引:0
|
作者
Yang, Rui [1 ]
机构
[1] Shanghai Inst Technol, Coll Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Schnakenberg model; gene expression time delay; periodic solution; Turing instability; Hopf bifurcation; SYMMETRIC STATIONARY SOLUTIONS; HOPF-BIFURCATION; TURING PATTERNS; STABILITY; SYSTEMS; HETEROGENEITY; EXISTENCE; EQUATIONS; SCHEMES; DOMAINS;
D O I
10.1080/00036811.2022.2159391
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The diffusive Schnakenberg model with gene expression time delay is considered. In this paper, the stability, diffusion-driven instability, and time delay-induced Hopf bifurcation have been investigated. By linear stability analysis, we find the parameter areas where the unique positive equilibrium is stable and Turing instability can occur for a certain relationship of diffusion rates. Then we obtain a series of critical values for the time delay at which the spatially homogeneous and inhomogeneous periodic solutions may emerge. Based on the explicit formula determining the properties of the Hopf bifurcation, we employ numerical simulations for parameters both in the stable region and Turing instability region. The numerical simulations show that delay can destabilize the stability of the positive equilibrium solution and eventually induce spatially homogeneous and inhomogeneous periodic solutions. Furthermore, the spatiotemporal patterns in the two spaces dimension from the Turing instability regime provide an indication of the wealth of patterns that the delayed system can exhibit.
引用
收藏
页码:672 / 693
页数:22
相关论文
共 50 条
  • [1] Bifurcation analysis of reaction-diffusion Schnakenberg model
    Liu, Ping
    Shi, Junping
    Wang, Yuwen
    Feng, Xiuhong
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2013, 51 (08) : 2001 - 2019
  • [2] Cross-diffusion induced spatiotemporal patterns in Schnakenberg reaction-diffusion model
    Yang, Rui
    NONLINEAR DYNAMICS, 2022, 110 (02) : 1753 - 1766
  • [3] Hopf bifurcation analysis in a one-dimensional Schnakenberg reaction-diffusion model
    Xu, Chuang
    Wei, Junjie
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (04) : 1961 - 1977
  • [4] Bifurcation analysis of reaction–diffusion Schnakenberg model
    Ping Liu
    Junping Shi
    Yuwen Wang
    Xiuhong Feng
    Journal of Mathematical Chemistry, 2013, 51 : 2001 - 2019
  • [5] Spatiotemporal Patterns in a Delayed Reaction-Diffusion Mussel-Algae Model
    Shen, Zuolin
    Wei, Junjie
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (12):
  • [6] An algorithm for Hopf bifurcation analysis of a delayed reaction-diffusion model
    Kayan, S.
    Merdan, H.
    NONLINEAR DYNAMICS, 2017, 89 (01) : 345 - 366
  • [7] Cross-diffusion induced spatiotemporal patterns in Schnakenberg reaction–diffusion model
    Rui Yang
    Nonlinear Dynamics, 2022, 110 : 1753 - 1766
  • [8] Stability and bifurcation analysis in a delayed reaction-diffusion malware propagation model
    Zhu, Linhe
    Zhao, Hongyong
    Wang, Xiaoming
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 69 (08) : 852 - 875
  • [9] Analysis of spatiotemporal patterns in a single species reaction-diffusion model with spatiotemporal delay
    Yang, Gaoxiang
    Xu, Jian
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 22 : 54 - 65
  • [10] Hopf bifurcation of a delayed reaction-diffusion model with advection term
    Ma, Li
    Wei, Dan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 212 (212)