On maximum likelihood estimation for Gaussian spatial autoregression models

被引:2
|
作者
Mohapl, J [1 ]
机构
[1] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada
关键词
spatial process; asymptotic normality; consistency; lattice sampling; stochastic difference equation;
D O I
10.1023/A:1003457632479
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The article presents a central limit theorem for the maximum likelihood estimator of a vector-valued parameter in a linear spatial stochastic difference equation with Gaussian white noise right side. The result is compared to the known limit theorems derived for the approximate likelihood e.g. by Whittle (1954, Biometrika, 41, 434-439), Guyon (1982, Biometrika, 69, 95-105) and Rosenblatt (1985, Stationary Sequences and Random Fields, Birkhauser, Boston) and to the asymptotic properties of the quasi-likelihood studied by Heyde and Gay (1989, Stochastic Process. Appl., 31, 223-236; 1993, Stochastic Process. Appl., 45, 169-182). Application of the theory is demonstrated on several classes of models including the one considered by Niu (1995, J. Multivariate Anal., 55, 82-104).
引用
收藏
页码:165 / 186
页数:22
相关论文
共 50 条
  • [41] Penalised maximum likelihood estimation for fractional Gaussian processes
    Lieberman, O
    BIOMETRIKA, 2001, 88 (03) : 888 - 894
  • [42] Maximum likelihood estimation of spatial covariance parameters
    Pardo-Iguzquiza, E
    MATHEMATICAL GEOLOGY, 1998, 30 (01): : 95 - 108
  • [43] Maximum Likelihood Estimation of Spatial Covariance Parameters
    Eulogio Pardo-Igúzquiza
    Mathematical Geology, 1998, 30 : 95 - 108
  • [44] High-Order Analysis of the Efficiency Gap for Maximum Likelihood Estimation in Nonlinear Gaussian Models
    Yeredor, Arie
    Weiss, Amir
    Weiss, Anthony J.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (18) : 4782 - 4795
  • [45] Empirical Bayes hierarchical models for regularizing maximum likelihood estimation in the matrix Gaussian Procrustes problem
    Theobald, Douglas L.
    Wuttke, Deborah S.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (49) : 18521 - 18527
  • [46] BOOTSTRAPPING STATE-SPACE MODELS - GAUSSIAN MAXIMUM-LIKELIHOOD-ESTIMATION AND THE KALMAN FILTER
    STOFFER, DS
    WALL, KD
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1991, 86 (416) : 1024 - 1033
  • [47] Maximum likelihood estimation of stable Paretian models
    Mittnik, S
    Rachev, ST
    Doganoglu, T
    Chenyao, D
    MATHEMATICAL AND COMPUTER MODELLING, 1999, 29 (10-12) : 275 - 293
  • [48] MAXIMUM LIKELIHOOD ESTIMATION FOR MOVING AVERAGE MODELS
    MURTHY, DNP
    KRONAUER, RE
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1973, 35 (DEC): : 455 - 464
  • [49] Improved Maximum Likelihood Estimation of ARMA Models
    Di Gangi, Leonardo
    Lapucci, Matteo
    Schoen, Fabio
    Sortino, Alessio
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (09) : 2433 - 2443
  • [50] Maximum Likelihood Estimation Methods for Copula Models
    Zhang, Jinyu
    Gao, Kang
    Li, Yong
    Zhang, Qiaosen
    COMPUTATIONAL ECONOMICS, 2022, 60 (01) : 99 - 124