Federated SPARQL Queries Processing with Replicated Fragments

被引:13
|
作者
Montoya, Gabriela [1 ,2 ]
Skaf-Molli, Hala [1 ]
Molli, Pascal [1 ]
Vidal, Maria-Esther [3 ]
机构
[1] Univ Nantes, LINA, Nantes, France
[2] CNRS, Unit UMR6241, Nantes, France
[3] Univ Simon Bolivar, Caracas, Venezuela
来源
关键词
Linked data; Federated query processing; Source selection; Fragment replication;
D O I
10.1007/978-3-319-25007-6_3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated query engines provide a unified query interface to federations of SPARQL endpoints. Replicating data fragments from different Linked Data sources facilitates data re-organization to better fit federated query processing needs of data consumers. However, existing federated query engines are not designed to support replication and replicated data can negatively impact their performance. In this paper, we formulate the source selection problem with fragment replication (SSP-FR). For a given set of endpoints with replicated fragments and a SPARQL query, the problem is to select the endpoints that minimize the number of tuples to be transferred. We devise the FEDRA source selection algorithm that approximates SSP-FR. We implement FEDRA in the state-of-the-art federated query engines FedX and ANAPSID, and empirically evaluate their performance. Experimental results suggest that FEDRA efficiently solves SSP-FR, reducing the number of selected SPARQL endpoints as well as the size of query intermediate results.
引用
收藏
页码:36 / 51
页数:16
相关论文
共 50 条
  • [41] Canonicalisation of Monotone SPARQL Queries
    Salas, Jaime
    Hogan, Aidan
    SEMANTIC WEB - ISWC 2018, PT I, 2018, 11136 : 600 - 616
  • [42] Tuning fuzzy SPARQL queries
    Almendros-Jiménez, Jesús M.
    Becerra-Terón, Antonio
    Moreno, Ginés
    Riaza, José A.
    International Journal of Approximate Reasoning, 2024, 170
  • [43] Tuning fuzzy SPARQL queries
    Almendros-Jimenez, Jesus M.
    Becerra-Teron, Antonio
    Moreno, Gines
    Riaza, Jose A.
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2024, 170
  • [44] Rewriting Complex SPARQL Analytical Queries for Efficient Cloud-based Processing
    Ravindra, Padmashree
    Kim, HyeongSik
    Anyanwu, Kemafor
    PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2015, : 32 - 37
  • [45] An empirical evaluation of cost-based federated SPARQL query processing engines
    Qudus, Umair
    Saleem, Muhammad
    Ngomo, Axel-Cyrille Ngonga
    Lee, Young-Koo
    SEMANTIC WEB, 2021, 12 (06) : 843 - 868
  • [46] SPARQL-MM - Extending SPARQL to Media Fragments
    Kurz, Thomas
    Schaffert, Sebastian
    Schlegel, Kai
    Stegmaier, Florian
    Kosch, Harald
    SEMANTIC WEB: ESWC 2014 SATELLITE EVENTS, 2014, 8798 : 236 - 240
  • [47] Explaining Unexpected Answers of SPARQL Queries
    Parkin, Louise
    Chardin, Brice
    Jean, Stephane
    Hadjali, Allel
    WEB INFORMATION SYSTEMS ENGINEERING - WISE 2022, 2022, 13724 : 136 - 151
  • [48] On the Power of SPARQL in Expressing Navigational Queries
    Zhang, Xiaowang
    Van den Bussche, Jan
    COMPUTER JOURNAL, 2015, 58 (11): : 2841 - 2851
  • [49] QueryVOWL: Visual Composition of SPARQL Queries
    Haag, Florian
    Lohmann, Steffen
    Siek, Stephan
    Ertl, Thomas
    SEMANTIC WEB: ESWC 2015 SATELLITE EVENTS, 2015, 9341 : 62 - 66
  • [50] Why provenance of SPARQL 1.1 queries
    Analyti, Anastasia
    International Journal of Web Engineering and Technology, 2024, 19 (03) : 232 - 266