A Highly Efficient CRISPR-Cas9-Mediated Large Genomic Deletion in Bacillus subtilis

被引:64
|
作者
So, Younju [1 ,2 ]
Park, Soo-Young [3 ]
Park, Eun-Hye [3 ]
Park, Seung-Hwan [1 ,2 ]
Kim, Eui-Joong [3 ]
Pan, Jae-Gu [1 ]
Choi, Soo-Keun [1 ,2 ]
机构
[1] Korea Res Inst Biosci & Biotechnol, Infect Dis Res Ctr, Daejeon, South Korea
[2] Korea Univ Sci & Technol UST, KRIBB Sch Biotechnol, Dept Biosyst & Bioengn, Daejeon, South Korea
[3] Genofocus Inc, Daejeon, South Korea
来源
关键词
CRISPR-Cas9; Bacillus subtilis; genome engineering; large genomic deletion; genomic point mutation; gene insertion; MARKER-FREE DELETIONS; CRISPR-CAS SYSTEMS; HETEROLOGOUS HOST; ESCHERICHIA-COLI; PLASMID; RNA; DNA; PROMOTER; VECTOR;
D O I
10.3389/fmicb.2017.01167
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
In Bacillus subtilis, large genomic deletions have been carried out for genome reduction, antibiotic overproduction, and heterologous protein overexpression. In view of the eco-friendliness of B. subtilis, it is critical that engineering preserves its food-grade status and avoids leaving foreign DNA in the genome. Existing methods of generating large genomic deletions leave antibiotic resistance markers or display low mutation efficiency. In this study, we introduced a clustered regularly interspaced short palindromic repeat-derived genome engineering technique to develop a highly efficient method of generating large genomic deletions in B. subtilis without any trace of foreign DNA. Using our system, we produced 38 kb plipastatin-synthesizing pps operon deletion with 80% efficiency. The significant increase in mutation efficiency was due to plasmids-delivered Streptococcus pyogenes-originated SpCas9, target-specific sgRNA and a donor DNA template, which produces SpCas9/sgRNA endonuclease complex continuously for attacking target chromosome until the mutagenic repair occurs. Our system produced single-gene deletion in spo0A (similar to 100%), point mutation (similar to 68%) and GFP gene insertion (similar to 97%) in sigE and demonstrated its broad applicability for various types of site-directed mutagenesis in B. subtilis.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Direct evidence of CRISPR-Cas9-mediated mitochondrial genome editing
    Bi, Rui
    Li, Yu
    Xu, Min
    Zheng, Quanzhen
    Zhang, Deng-Feng
    Li, Xiao
    Ma, Guolan
    Xiang, Bolin
    Zhu, Xiaojia
    Zhao, Hui
    Huang, Xingxu
    Zheng, Ping
    Yao, Yong-Gang
    INNOVATION-ORGANIZATION & MANAGEMENT, 2022, 3 (06):
  • [42] Establishment of a CRISPR-Cas9-Mediated Genome Editing System in Flax
    Wang, Chunming
    Sun, Chao
    Shi, Li
    Zhou, Jiannan
    Liu, Shuai
    Bai, Yongsheng
    Yu, Weichang
    CRISPR JOURNAL, 2025, 8 (01): : 51 - 59
  • [43] CRISPR-Cas9-Mediated Silencing of CD44 in Human Highly Metastatic Osteosarcoma Cells
    Liu, Tang
    Yan, Zuyun
    Liu, Yong
    Choy, Edwin
    Hornicek, Francis J.
    Mankin, Henry
    Duan, Zhenfeng
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2018, 46 (03) : 1218 - U517
  • [44] CRISPR-Cas9-mediated generation of obese and diabetic mouse models
    Roh, Jae-il
    Lee, Junghoon
    Park, Seong Uk
    Kang, Young-Shin
    Lee, Jaehoon
    Oh, Ah-Reum
    Choi, Dong Joon
    Cha, Ji-Young
    Lee, Han-Woong
    EXPERIMENTAL ANIMALS, 2018, 67 (02) : 229 - 237
  • [45] Rapid and efficient generation of GFP-knocked-in Drosophila by the CRISPR-Cas9-mediated genome editing
    Kina, Hirono
    Yoshitani, Takashi
    Hanyu-Nakamura, Kazuko
    Nakamura, Akira
    DEVELOPMENT GROWTH & DIFFERENTIATION, 2019, 61 (04) : 265 - 275
  • [46] Large-scale GMP-compliant CRISPR-Cas9-mediated deletion of the glucocorticoid receptor in multivirus-specific T cells
    Basar, Rafet
    Daher, May
    Uprety, Nadima
    Gokdemir, Elif
    Alsuliman, Abdullah
    Ensley, Emily
    Ozcan, Gonca
    Mendt, Mayela
    Sanabria, Mayra Hernandez
    Kerbauy, Lucila Nassif
    Cortes, Ana Karen Nunez
    Li, Li
    Banerjee, Pinaki P.
    Muniz-Feliciano, Luis
    Acharya, Sunil
    Fowlkes, Natalie W.
    Lu, Junjun
    Li, Sufang
    Mielke, Stephan
    Kaplan, Mecit
    Nandivada, Vandana
    Bdaiwi, Mustafa
    Kontoyiannis, Alexander D.
    Li, Ye
    Liu, Enli
    Ang, Sonny
    Marin, David
    Brunetti, Lorenzo
    Gundry, Michael C.
    Turk, Rolf
    Schubert, Mollie S.
    Rettig, Garrett R.
    McNeill, Matthew S.
    Kurgan, Gavin
    Behlke, Mark A.
    Champlin, Richard
    Shpall, Elizabeth J.
    Rezvani, Katayoun
    BLOOD ADVANCES, 2020, 4 (14) : 3357 - 3367
  • [47] Highly Efficient Genome Modifications Mediated by CRISPR/Cas9 in Drosophila
    Yu, Zhongsheng
    Ren, Mengda
    Wang, Zhanxiang
    Zhang, Bo
    Rong, Yikang S.
    Jiao, Renjie
    Gao, Guanjun
    GENETICS, 2013, 195 (01): : 289 - +
  • [48] A Simplified Method for CRISPR-Cas9 Engineering of Bacillus subtilis
    Sachla, Ankita J.
    Alfonso, Alexander J.
    Helmann, John D.
    MICROBIOLOGY SPECTRUM, 2021, 9 (02):
  • [49] Differentiation and CRISPR-Cas9-mediated genetic engineering of human intestinal organoids
    Martinez-Silgado, Adriana
    Yengej, Fjodor A. Yousef
    Puschhof, Jens
    Geurts, Veerle
    Boot, Charelle
    Geurts, Maarten H.
    Rookmaaker, Maarten B.
    Verhaar, Marianne C.
    Beumer, Joep
    Clevers, Hans
    STAR PROTOCOLS, 2022, 3 (03):
  • [50] Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System
    Altenbuchner, Josef
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2016, 82 (17) : 5421 - 5427