Deep Convolutional Neural Networks for Displacement Estimation in ARFI Imaging

被引:10
|
作者
Chan, Derek Y. [1 ]
Morris, D. Cody [1 ]
Polascik, Thomas J. [2 ]
Palmeri, Mark L. [1 ]
Nightingale, Kathryn R. [1 ]
机构
[1] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA
[2] Duke Univ, Med Ctr, Dept Surg, Durham, NC 27710 USA
基金
美国国家卫生研究院;
关键词
Acoustic radiation force; deep learning; displacement estimation; ultrasound; RADIATION; TRACKING; ELASTOGRAPHY; ELASTICITY; HISTOLOGY; STRAIN;
D O I
10.1109/TUFFC.2021.3068377
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Ultrasound elasticity imaging in soft tissue with acoustic radiation force requires the estimation of displacements, typically on the order of several microns, from serially acquired raw data A-lines. In this work, we implement a fully convolutional neural network (CNN) for ultrasound displacement estimation. We present a novel method for generating ultrasound training data, in which synthetic 3-D displacement volumes with a combination of randomly seeded ellipsoids are created and used to displace scatterers, from which simulated ultrasonic imaging is performed using Field II. Network performance was tested on these virtual displacement volumes, as well as an experimental ARFI phantom data set and a human in vivo prostate ARFI data set. In the simulated data, the proposed neural network performed comparably to Loupas's algorithm, a conventional phase-based displacement estimation algorithm; the rms error was 0.62 mu m for the CNN and 0.73 mu m for Loupas. Similarly, in the phantom data, the contrast-to-noise ratio (CNR) of a stiff inclusion was 2.27 for the CNN-estimated image and 2.21 for the Loupas-estimated image. Applying the trained network to in vivo data enabled the visualization of prostate cancer and prostate anatomy. The proposed training method provided 26 000 training cases, which allowed robust network training. The CNN had a computation time that was comparable to Loupas's algorithm; further refinements to the network architecture may provide an improvement in the computation time. We conclude that deep neural network-based displacement estimation from ultrasonic data is feasible, providing comparable performance with respect to both accuracy and speed compared to current standard time-delay estimation approaches.
引用
收藏
页码:2472 / 2481
页数:10
相关论文
共 50 条
  • [41] Automated focus distance estimation for digital microscopy using deep convolutional neural networks
    Dastidar, Tathagato Rai
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 1049 - 1056
  • [42] Data-Driven Deep Convolutional Neural Networks for Electromagnetic Field Estimation of Transformers
    Chen, Yifan
    Yang, Qingxin
    Li, Yongjian
    Zhang, Hao
    Zhang, Changgeng
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2024, 34 (08) : 1 - 4
  • [43] Two-Stage Deep Convolutional Neural Networks for DOA Estimation in Impulsive Noise
    Cai, Ruiyan
    Tian, Quan
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2024, 72 (02) : 2047 - 2051
  • [44] Deep PPG: Large-Scale Heart Rate Estimation with Convolutional Neural Networks
    Reiss, Attila
    Indlekofer, Ina
    Schmidt, Philip
    Van Laerhoven, Kristof
    SENSORS, 2019, 19 (14)
  • [45] Blind noise parameters estimation for multichannel images using deep convolutional neural networks
    Uss, M.
    Vozel, B.
    Lukin, V.
    Chehdi, K.
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXV, 2019, 11155
  • [46] Plug and Play Deep Convolutional Neural Networks
    Neary, Patrick
    Allan, Vicki
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE (ICAART), VOL 2, 2019, : 388 - 395
  • [47] An Efficient Accelerator for Deep Convolutional Neural Networks
    Kuo, Yi-Xian
    Lai, Yeong-Kang
    2020 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TAIWAN), 2020,
  • [48] Elastography mapped by deep convolutional neural networks
    LIU DongXu
    KRUGGEL Frithjof
    SUN LiZhi
    Science China(Technological Sciences), 2021, (07) : 1567 - 1574
  • [49] Predicting enhancers with deep convolutional neural networks
    Min, Xu
    Zeng, Wanwen
    Chen, Shengquan
    Chen, Ning
    Chen, Ting
    Jiang, Rui
    BMC BIOINFORMATICS, 2017, 18
  • [50] Metaphase finding with deep convolutional neural networks
    Moazzen, Yaser
    Capar, Abdulkerim
    Albayrak, Abdulkadir
    Calik, Nurullah
    Toreyin, Behcet Ugur
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2019, 52 : 353 - 361