On dual wavelet tight frames

被引:182
|
作者
Han, B
机构
[1] Department of Mathematical Sciences, University of Alberta, Edmonton
关键词
D O I
10.1006/acha.1997.0217
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A characterization of multivariate dual wavelet tight frames for any general dilation matrix is presented in this paper. As an application, Lawton's result on wavelet tight frames in L-2(R) is generalized to the n-dimensional case. Two ways of constructing certain dual wavelet tight frames in L-2(R-n) are suggested. Finally, examples of smooth wavelet tight frames in L-2(R) and H-2(R) are provided. In particular, an example is given to demonstrate that there is a function psi whose Fourier transform is positive, compactly supported, and infinitely differentiable which generates a non-MRA wavelet tight frame in H-2(R). (C) 1997 Academic Press.
引用
收藏
页码:380 / 413
页数:34
相关论文
共 50 条
  • [31] Extension principles for tight wavelet frames of periodic functions
    Goh, Say Song
    Teo, K. M.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2008, 25 (02) : 168 - 186
  • [32] Construction of multivariate compactly supported tight wavelet frames
    Lai, Ming-Jun
    Stoeckler, Joachim
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 21 (03) : 324 - 348
  • [33] Construction of two-direction tight wavelet frames
    Yan Feng
    Shouzhi Yang
    Frontiers of Mathematics in China, 2014, 9 : 1293 - 1308
  • [34] Nonstationary tight wavelet frames, I:: Bounded intervals
    Chui, CK
    He, WJ
    Stöckler, J
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2004, 17 (02) : 141 - 197
  • [35] Construction of two-direction tight wavelet frames
    Feng, Yan
    Yang, Shouzhi
    FRONTIERS OF MATHEMATICS IN CHINA, 2014, 9 (06) : 1293 - 1308
  • [36] On Characterization of Nonuniform Tight Wavelet Frames on Local Fields
    Owais Ahmad
    Neyaz A.Sheikh
    AnalysisinTheoryandApplications, 2018, 34 (02) : 135 - 146
  • [37] Characterization on irregular tight wavelet frames with matrix dilations
    Yang, Deyun
    Huan, Zhengliang
    Song, Zhanjie
    Yang, Hongxiang
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 2, PROCEEDINGS, 2007, 4488 : 1029 - +
  • [38] Tight wavelet frames in low dimensions with canonical filters
    Jiang, Qingtang
    Shen, Zuowei
    JOURNAL OF APPROXIMATION THEORY, 2015, 196 : 55 - 78
  • [39] Approximately dual pairs of wavelet frames
    Benavente, Ana
    Christensen, Ole
    Hasannasab, Marzieh
    Kim, Hong Oh
    Kim, Rae Young
    Kovac, Federico D.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 507 (02)
  • [40] SYMMETRIC INTERPOLATORY DUAL WAVELET FRAMES
    Krivoshein, A. V.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2017, 28 (03) : 323 - 343